摘要:
A process is set forth for the recovery of methane, nitrogen and natural gas liquids (C.sub.2+) from a natural gas feed stream wherein the recovery can be made at high pressure by the integration of a nitrogen rejection stage including a heat pump driven distillation column and a natural gas liquids stage. Nitrogen can be rejected over a wide range of nitrogen concentration (approximately 1 to about 80%) of the feed stream.
摘要:
Carbon black is produced from a pyrolyzed hydrocarbon wherein pyrolysis is effected by combusting a synthesis gas containing hydrogen and carbon monoxide. The synthesis gas is produced from reforming a hydrocarbon fuel, wherein the reformation is heated by combusting carbon black effluent tail gas or indirect heat exchange of the hot tail gas.
摘要:
A process for hydrogenating olefins is disclosed. The olefins are present in a feed gas which includes H2 and one or more sulfur compounds. The sulfur compounds may include H2S and organic sulfur compounds. The feed gas is passed through a reactor at an inlet temperature from 100° C. to 250° C. The reactor contains a catalyst which is active at the inlet temperature. The reactor may be adiabatic. Saturated hydrocarbons are formed from the olefins. A temperature gradient may be formed in the reactor due to the exothermic nature of the hydrogenation reaction, causing the temperature to increase downstream in the reactor. At temperatures higher than the inlet temperature, H2S may be formed from organic sulfur compounds. A gas mixture including saturated hydrocarbons, H2S and H2 exits the reactor and may be brought into contact with a chemical adsorbent which removes the H2S. The gas stream may then be passed to a steam methane reformer.
摘要:
A process for hydrogenating olefins is disclosed. The olefins are present in a feed gas which includes H2 and one or more sulfur compounds. The sulfur compounds may include H2S and organic sulfur compounds. The feed gas is passed through a reactor at an inlet temperature from 100° C. to 250° C. The reactor contains a catalyst which is active at the inlet temperature. The reactor may be adiabatic. Saturated hydrocarbons are formed from the olefins. A temperature gradient may be formed in the reactor due to the exothermic nature of the hydrogenation reaction, causing the temperature to increase downstream in the reactor. At temperatures higher than the inlet temperature, H2S may be formed from organic sulfur compounds. A gas mixture including saturated hydrocarbons, H2S and H2 exits the reactor and may be brought into contact with a chemical adsorbent which removes the H2S. The gas stream may then be passed to a steam methane reformer.
摘要:
A permeator system for separating at least one gaseous component from a feed gas mixture containing at least one other component using a semi-permeable membrane is disclosed which maintains high permeate product purity and desired component recovery during periods of turn-down in capacity. In accordance with the present invention, the permeator system contains a series of flow and pressure sensors and valves which regulate differential pressure across the membrane based upon permeate product demand or feed availability.
摘要:
A process is disclosed for the rejection of nitrogen from natural gas with the optional recovery of natural gas liquids. The process of the present invention employs a dephlegmator which provides a high purity nitrogen reflux for a low pressure distillation column and provides subcooling of the feed and reflux to the low pressure column and reboiling of the low pressure column. The dephlegmator of the present invention combines the high pressure column and three heat exchangers of a conventional double column process into a single, compact unit, with corresponding reductions in interconnecting piping and capital investment.
摘要:
The present invention is directed to a gas separation system for separating or rejecting nitrogen from a natural gas feed containing nitrogen, over a wide range of nitrogen concentrations, under elevated pressure using a single distillation column with two intermediate side condensers and a closed loop heat pump which reboils and partially refluxes the column. The lower of the intermediate condensers is cooled by heat exchange with the heat pump fluid and the overhead nitrogen fraction of the column. The upper of the intermediate condensers is cooled by heat exchange with the overhead nitrogen fraction of the column. The process can handle feeds with increasing nitrogen composition and more than 100 vppm carbon dioxide. The process provides a high methane recovery over the entire feed range, and provides a nitrogen product having an elevated pressure suitable for recycling and reinjection into an oil or gas well to maintain well head pressure.