摘要:
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide having the following repeating unit. ##STR1## wherein Z=C or SO.sub.2. Provided is an improved high temperature matrix resin which is capable of performing in the 200.degree. to 300.degree. C. range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.
摘要:
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide having the following repeating unit. ##STR1## wherein Z=C or SO.sub.2. Provided is an improved high temperature matrix resin which is capable of performing in the 200.degree. to 300.degree. C. range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.
摘要:
A composite conductor includes a conductor that has a high temperature polyimide insulation formed around it. This polyimide layer may include reinforcing fibers such as, for instance, glass fibers. The insulation layer may further include grading layers. The conductor is placed inside an earth layer. The composite conductor may be protected with a stainless steel enclosure.
摘要:
A low temperature processable, thermoplastic polyimide and methods for making and using the same. The polyimide has repeating polymer units of the formula ##STR1## wherein n is 2 to about 20 and the molecular weight of the polymer chain is about 5,000 to about 50,000. The polymer is made by reacting 4,4'-(hexafluoroisopropylidene)bis(o-phthalic anhydride) with a diamine having the formula H.sub.2 N(CH.sub.2).sub.n NH.sub.2 wherein n is 2 to about 20 to form a polyamic acid. The polyamic acid is imidized to form the polyimide described above. The polyimide is particularly adapted to use as a hot melt adhesive by placing it between two articles and applying heat and pressure.
摘要:
In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.
摘要:
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing the monomer precursors of Thermid.RTM. AL-600 (a thermoset) and NR-150B2 (a thermoplastic) and allowing the monomers to react randomly upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene end-capped polyimides which were previously inherently brittle and difficult to process.
摘要:
This invention is a process for making a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide having the following repeating unit: ##STR1## Provided is an improved high temperature matrix resin which is capable of performing at 316.degree. C. in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.
摘要:
A pharmaceutical composition suitable for the treatment of a condition selected from the group consisting of cardiovascular disease, cerebrovascular disease, Alzheimer's disease, depression or combinations thereof comprising various mixtures of the aqueous extracts of tissue of specific Chinese plants and herbs. A method of preparing the pharmaceutical compositions of the invention and a method for treating a patient therewith are also disclosed.
摘要:
A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance and mechanical performance, when compared to the commercial Thermid.RTM. materials. This simultaneous semi-IPN was prepared by mixing a thermosetting polyimide with a thermoplastic monomer precursor solution (NR-150B2) and allowing them to react upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene endcapped polyimides which were previously inherently brittle and difficult to process.
摘要:
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide having the following repeating unit: ##STR1## Provided is an improved high temperature matrix resin which is capable of performing at 316.degree. C. in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.