摘要:
A method of implanting a magnetic garnet film with ions is disclosed in which a covering film is provided on a monocrystalline magnetic garnet film for magnetic bubbles, and hydrogen ions are implanted in a desired portion of a surface region in the magnetic garnet film through the covering film. According to this method, it is possible to form an ion-implanted layer in which the ion concentration distribution in the direction of depth is uniform, and moreover the inplane anisotropy field in the ion-implanted layer decreases only a little with time in an annealing process.
摘要:
A method of fabricating a magnetic bubble memory device is disclosed in which ions are implanted in a desired portion of a surface region in a magnetic bubble film for magnetic bubbles to form a strain layer having a strain of about 1% to about 2.5%, a film is provided on the magnetic bubble film so as to cover the magnetic bubble film with the film and then the magnetic bubble film is annealed under predetermined conditions, thereby providing a practical magnetic bubble memory device having a large bias margin.
摘要:
Hydrogen ion is implanted twice or more at different acceleration voltages into desired portions of a magnetic film holding magnetic bubbles to form a magnetic bubble propagation path. This ensures production of an ion-implanted device having a sufficiently large anisotropic magnetic field parallel to the magnetic film and a high Curie temperature.
摘要:
A method of fabricating a magnetic bubble memory device is disclosed in which a desired portion of a surface region in a magnetic bubble film for magnetic bubbles is implanted with hydrogen ions with an ion dose of 2.5.times.10.sup.16 to 1.times.10.sup.17 cm.sup.-2, the surface of magnetic bubble film thus formed is covered with a film, and then the magnetic bubble film is annealed. According to this method, a reduction in propagation margin due to annealing is effectively prevented, and it is possible to form a magnetic bubble memory device of the contiguous disk type which is excellent in thermal stability.
摘要翻译:公开了一种制造磁性气泡存储装置的方法,其中用于磁性气泡的磁性气泡膜中的表面区域的期望部分用离子剂量为2.5×10 16至1×10 17 cm -2的氢离子注入,磁性表面 由此形成的气泡膜被膜覆盖,然后使气泡膜退火。 根据该方法,有效地防止了由于退火导致的传播余量的降低,并且可以形成热稳定性优异的连续盘型的气泡存储装置。
摘要:
A magnetic bubble memory device is disclosed which is equipped with a minor loop of a magnetic bubble propagation track formed by ion implantation and a major loop or major line of a magnetic bubble propagation track consisting of a soft magnetic film and in which the thickness of an insulating film at at least the junction between the minor loop and the major loop or major line is less than the thickness of insulating film at the major line or major loop.
摘要:
A magnetic bubble memory device has two types of magnetic bubble propagation tracks. One type of magnetic bubble propagation tracks are formed by implanting ions into a magnetic layer. The other are formed by a soft magnetic material, for example, a permalloy. At least the area where the soft magnetic material is located has a smaller thickness than the other area.
摘要:
A magnetic bubble device has minor loops formed through ion implantation and used for storing information. As the density becomes higher, inside turn corner portions are formed on the minor loops. Dummy patterns having circular, triangular or other shapes are disposed in the vicinity of the corner portion. It is desirable that the minimum distance X between the dummy pattern and the propagation track satisfy the relation of 1.5 D.ltoreq.X.ltoreq.3.5 D, where D represents the diameter of a bubble.
摘要:
In a magnetic bubble device, a strain layer formed on the surface of a magnetic bubble garnet film by ion-implantation is required to have anisotropy field of great strength in the in-plane direction for driving magnetic bubbles. For preventing the effective anisotropy field change from being decreased by heat treatment, ion species having large mass and projected standard deviation not greater than 1000 .ANG. are implanted. The ion species are preferably selected from He to Kr in the periodic table. The heat treatment is effected at a temperature in a range of 450.degree. C. to 900.degree. C.
摘要:
Ion implantation is conducted in a desired area(s) of the surface of a magnetic layer, and annealing of the layer is carried out to control the composition in that desired area(s). The control of the composition may be facilitated by applying a one-directional or rotating magnetic field during ion implantation. In preparing a magnetic head, a portion of a magnetic pole at least on one side thereof in close proximity to a magnetic recording medium is formed into an iron or iron-based magnetic alloy film, at least part of which is subjected to ion implantation and annealing.
摘要:
Ion implantation is conducted in a desired area(s) of the surface of a magnetic layer, and annealing of the layer is carried out to control the composition in that desired area(s). The control of the composition may be facilitated by applying a one-directional or rotating magnetic field during ion implantation. In preparing a magnetic head, a portion of a magnetic pole at least on one side thereof in close proximity to a magnetic recording medium is formed into an iron or iron-based magnetic alloy film, at least part of which is subjected to ion implantation and annealing.