摘要:
Disclosed is a rechargeable lithium battery comprising a negative electrode and a positive electrode capable of intercalating and deintercalating lithium, and an electrolyte, wherein the electrolyte comprises a polyacrylate compound having three or more acrylic groups.
摘要:
An electrolyte for a lithium secondary battery which has a non-aqueous organic solvent including a γ-butyrolactone and optionally a cyclic carbonate, an ester compound having an electron withdrawing group, and at least two salts. The lithium secondary battery including the electrolyte has good safety and good storage characteristics at high temperature.
摘要:
Disclosed is a rechargeable lithium battery comprising a negative electrode and a positive electrode capable of intercalating and deintercalating lithium, and an electrolyte, wherein the electrolyte comprises a polyacrylate compound having three or more acrylic groups.
摘要:
An electrolyte for a lithium secondary battery is provided. The electrolyte includes a lithium salt, a non-aqueous organic solvent, and a compound represented by Formula (1): wherein R1, R2, and R3 are each independently selected from the group consisting of hydrogen, primary, secondary, and tertiary alkyl groups, alkenyl groups, and aryl groups. The compound of the present invention is decomposed earlier than an electrolytic organic solvent, and an organic SEI film is formed on a negative electrode, thereby inhibiting the electrolytic organic solvent from decomposing.
摘要:
A polymer electrolyte includes a gel-forming polymer electrolyte including a gel-forming compound connected at metal cations, and an organic electrolyte of a lithium salt and an aprotic solvent. The polymer electrolyte includes a gel-forming polymer electrolyte that includes at least one aziridine ring-containing compound, and an organic electrolyte of lithium salt and aprotic solvent.
摘要:
Disclosed is a method of fabricating a rechargeable lithium battery and a rechargeable lithium battery fabricated by the same. In this method, an electrolyte is placed between a positive electrode and a negative electrode to prepare an electrode element, and the electrode element is pulse charged.
摘要:
A non-aqueous electrolyte having improved lithium ion conductivity and excellent voltage resistance is provided. A lithium rechargeable battery and a rechargeable battery system including the inventive non-aqueous electrolyte is also provided. The non-aqueous electrolyte includes at least one aromatic compound which is polymerizable at a working electrode potential of 4.2 to 4.5 V when a lithium metal is used as a counter electrode and platinum is used as a working electrode.
摘要:
Disclosed is a rechargeable lithium battery comprising a negative electrode and a positive electrode capable of intercalating and deintercalating lithium, and an electrolyte, wherein the electrolyte comprises a polyacrylate compound having three or more acrylic groups.
摘要:
A solid polymer electrolyte, a lithium battery employing the same, and methods of forming the electrolyte and the lithium battery. The polymer electrolyte includes polyester (meth)acrylate having a polyester polyol moiety having three or more hydroxide (—OH) groups, at least one hydroxde group being substituted by a (meth)acrylic ester group and at least one hydroxide group being substituted by a radical non-reactive group, or its polymer, a peroxide having 6 to 40 carbon atoms, and an electrolytic solution including a lithium salt and an organic solvent.
摘要:
A charged particle beam apparatus comprising a preparatory evacuation chamber (15 in FIG. 1A) into which a sample (12) is conveyed and which is preliminarily evacuated, an ultraviolet irradiation unit (21) which is disposed in the preparatory evacuation chamber (15) and which irradiates the surface of the sample (12) conveyed into the preparatory evacuation chamber (15), with ultraviolet rays for a predetermined time period, and a sample chamber (16) into which the sample (12) is conveyed in the preliminarily evacuated state of the preparatory evacuation chamber (15) or from which the sample (12) is conveyed into the preparatory evacuation chamber (15), wherein the ultraviolet irradiation of the sample (12) by the ultraviolet irradiation unit (21) is performed before the conveyance of the sample (12) into the sample chamber (16), or/and after the conveyance thereof from the sample chamber (16), thereby to remove contamination on the surface of the sample (12).