Abstract:
A loader device for loading porous substrates of three-dimensional shapes extending mainly in a longitudinal direction into a reaction chamber of an infiltration oven for densification of the preforms by directed flow chemical vapor infiltration. The device comprising at least one annular loader stage formed by first and second annular vertical walls arranged coaxially relative to each other and defining between them an annular loader space for the porous substrates to be densified. First and second plates respectively cover the bottom portion and the top portion of the annular loader space. The first and second annular vertical walls include support elements arranged in the annular loader space so as to define between them unit loader cells, each for receiving a respective substrate to be densified. The device also comprises gas feed orifices and gas exhaust orifices in the vicinity of each unit loader cell.
Abstract:
To densify thin porous substrates (1) by chemical vapor infiltration, the invention proposes using loading tooling (10) comprising a tubular duct (10) disposed between first and second plates (12, 13) and around which the thin substrates for densification are disposed radially. The tooling as loaded in this way is then placed inside a reaction chamber (20) in an infiltration oven having a reactive gas admission inlet (21) connected to the tubular duct (11) to enable a reactive gas to be admitted into the duct which distributes the gas along the main faces on the substrates (1) in a flow direction that is essentially radial. The reactive gas can also flow in the opposite direction, i.e. it can be admitted into the tooling (10) from its outer envelope (16) and can be removed via the duct (11).
Abstract:
A loader device for loading porous substrates of three-dimensional shapes extending mainly in a longitudinal direction into a reaction chamber of an infiltration oven for densification of the preforms by directed flow chemical vapor infiltration. The device comprising at least one annular loader stage formed by first and second annular vertical walls arranged coaxially relative to each other and defining between them an annular loader space for the porous substrates to be densified. First and second plates respectively cover the bottom portion and the top portion of the annular loader space. The first and second annular vertical walls include support elements arranged in the annular loader space so as to define between them unit loader cells, each for receiving a respective substrate to be densified. The device also comprises gas feed orifices and gas exhaust orifices in the vicinity of each unit loader cell.
Abstract:
To densify thin porous substrates (1) by chemical vapor infiltration, the invention proposes using loading tooling (10) comprising a tubular duct (10) disposed between first and second plates (12, 13) and around which the thin substrates for densification are disposed radially. The tooling as loaded in this way is then placed inside a reaction chamber (20) in an infiltration oven having a reactive gas admission inlet (21) connected to the tubular duct (11) to enable a reactive gas to be admitted into the duct which distributes the gas along the main faces on the substrates (1) in a flow direction that is essentially radial. The reactive gas can also flow in the opposite direction, i.e. it can be admitted into the tooling (10) from its outer envelope (16) and can be removed via the duct (11).
Abstract:
To densify thin porous substrates (1) by chemical vapor infiltration, the invention proposes using loading tooling (10) comprising a tubular duct (10) disposed between first and second plates (12, 13) and around which the thin substrates for densification are disposed radially. The tooling as loaded in this way is then placed inside a reaction chamber (20) in an infiltration oven having a reactive gas admission inlet (21) connected to the tubular duct (11) to enable a reactive gas to be admitted into the duct which distributes the gas along the main faces on the substrates (1) in a flow direction that is essentially radial. The reactive gas can also flow in the opposite direction, i.e. it can be admitted into the tooling (10) from its outer envelope (16) and can be removed via the duct (11).
Abstract:
To densify thin porous substrates (1) by chemical vapor infiltration, the invention proposes using loading tooling (10) comprising a tubular duct (10) disposed between first and second plates (12, 13) and around which the thin substrates for densification are disposed radially. The tooling as loaded in this way is then placed inside a reaction chamber (20) in an infiltration oven having a reactive gas admission inlet (21) connected to the tubular duct (11) to enable a reactive gas to be admitted into the duct which distributes the gas along the main faces on the substrates (1) in a flow direction that is essentially radial. The reactive gas can also flow in the opposite direction, i.e. it can be admitted into the tooling (10) from its outer envelope (16) and can be removed via the duct (11).