Abstract:
A thin film transistor substrate includes a substrate, a data line disposed on the substrate and which extends substantially in a predetermined direction, a light blocking layer disposed on the substrate and including a metal oxide including zinc manganese oxide, zinc cadmium oxide, zinc phosphorus oxide or zinc tin oxide, a gate electrode disposed on the light blocking layer, a signal electrode including a source electrode and a drain electrode spaced apart from the source electrode, where the source electrode is connected to the data line, and a semiconductor pattern disposed between the source electrode and the drain electrode.
Abstract:
A method of forming a tin oxide semiconductor thin film includes preparing a precursor solution including a tin oxide semiconductor, coating the precursor solution on a substrate; and performing a heat treatment on the substrate coated with the precursor solution. A tin compound having a different tin valence according to a semiconductor type of the tin oxide semiconductor may be used in the precursor solution.
Abstract:
Provided is a composition for forming tin oxide semiconductor including a tin precursor compound, an antimony precursor compound, and a solvent, according to an aspect of the present disclosure. Also provided is a method of forming a tin oxide semiconductor thin film. The method includes preparing a composition including a tin precursor compound and an antimony precursor compound dissolved in a solvent; disposing the composition on a substrate; and performing a heat treatment on the substrate coated with the composition.
Abstract:
A method of forming an oxide semiconductor device may be provided. In the method, a substrate comprising a first major surface and a second major surface that faces away from the first major surface may be provided. An oxide semiconductor device may be formed over the first major surface to provide an intermediate device, and the semiconductor device may comprise an oxide active layer. The intermediate device may be subjected to ultraviolet (UV) light (e.g., ultraviolet ray irradiation process) for a first period, and subjected to heat (e.g., thermal treatment process) for a second period. The first and second periods may at least partly overlap.