Abstract:
A semiconductor memory device includes a memory cell array, an error correction circuit, an error log register and a control logic circuit. The memory cell array includes a plurality of memory bank arrays and each of the memory bank arrays includes a plurality of pages. The control logic circuit is configured to control the error correction circuit to perform an ECC decoding sequentially on some of the pages designated at least one access address for detecting at least one bit error, in response to a first command received from a memory controller. The control logic circuit performs an error logging operation to write page error information into the error log register and the page error information includes a number of error occurrence on each of the some pages determined from the detecting.
Abstract:
A semiconductor memory device includes a memory cell array, an error correction circuit, an error log register and a control logic circuit. The memory cell array includes a plurality of memory bank arrays and each of the memory bank arrays includes a plurality of pages. The control logic circuit is configured to control the error correction circuit to perform an ECC decoding sequentially on some of the pages designated at least one access address for detecting at least one bit error, in response to a first command received from a memory controller. The control logic circuit performs an error logging operation to write page error information into the error log register and the page error information includes a number of error occurrence on each of the some pages determined from the detecting.
Abstract:
An anti-fuse circuit in which anti-fuse program data may be monitored outside of the anti-fuse circuit and a semiconductor device including the anti-fuse circuit are disclosed. The anti-fuse circuit includes an anti-fuse array, a data storage circuit, and a first selecting circuit. The anti-fuse array includes one or more anti-fuse blocks including a first anti-fuse block having a plurality of anti-fuse cells and the anti-fuse array is configured to store anti-fuse program data. The data storage circuit is configured to receive and store the anti-fuse program data from the anti-fuse array through one or more data buses. The first selecting circuit is configured to output anti-fuse program data of a selected anti-fuse block of the one or more anti-fuse blocks in response to a first selection signal.
Abstract:
A semiconductor memory device includes a memory cell array, an error correction circuit, an error log register and a control logic circuit. The memory cell array includes a plurality of memory bank arrays and each of the memory bank arrays includes a plurality of pages. The control logic circuit is configured to control the error correction circuit to perform an ECC decoding sequentially on some of the pages designated at least one access address for detecting at least one bit error, in response to a first command received from a memory controller. The control logic circuit performs an error logging operation to write page error information into the error log register and the page error information includes a number of error occurrence on each of the some pages determined from the detecting.
Abstract:
A semiconductor memory device includes a memory cell array, an error correction circuit, an error log register and a control logic circuit. The memory cell array includes a plurality of memory bank arrays and each of the memory bank arrays includes a plurality of pages. The control logic circuit is configured to control the error correction circuit to perform an ECC decoding sequentially on some of the pages designated at least one access address for detecting at least one bit error, in response to a first command received from a memory controller. The control logic circuit performs an error logging operation to write page error information into the error log register and the page error information includes a number of error occurrence on each of the some pages determined from the detecting.
Abstract:
A memory device including a stack semiconductor device including; an upper substrate vertically stacked on a lower substrate, the upper substrate including N upper through-silicon vias (UTSV) and upper driving circuits, and the lower substrate including N lower through-silicon vias (LTSV) and lower driving circuits, wherein each one of the upper driving circuits is stagger-connected between a Kth UTSV and a (K+1)th LTSV, where ‘N’ is a natural number greater than 1, and ‘K’ is a natural number ranging from 1 to (N−1).