Abstract:
A rechargeable power module (RPM) may include a rechargeable energy storage device such as a battery or capacitor, a charging circuit, a direct-current (DC) to DC converter, a low drop-out (LDO) voltage regulator and a controller. The charging circuit provides the rechargeable energy storage device with a charging current based on power requirements of device under test and the state of charge, or storage, of the energy storage device.
Abstract:
A rechargeable power module (RPM) may include a rechargeable energy storage device such as a battery or capacitor, a charging circuit, a direct-current (DC) to DC converter, a low drop-out (LDO) voltage regulator and a controller. The charging circuit provides the rechargeable energy storage device with a charging current based on power requirements of device under test and the state of charge, or storage, of the energy storage device.
Abstract:
A rechargeable power module (RPM) may include a rechargeable energy storage device such as a battery or capacitor, a charging circuit, a direct-current (DC) to DC converter, a low drop-out (LDO) voltage regulator and a controller. The charging circuit provides the rechargeable energy storage device with a charging current based on power requirements of device under test and the state of charge, or storage, of the energy storage device.
Abstract:
A test device includes a test unit and a voltage selection circuit. The test unit is configured to detect a voltage at a test pad of a semiconductor device under test by applying a test current to the test pad. The voltage selection circuit is configured to apply a selection voltage to a ground pad of the semiconductor device under test by selecting one of a plurality of voltages according to a test mode.
Abstract:
A rechargeable power module (RPM) may include a rechargeable energy storage device such as a battery or capacitor, a charging circuit, a direct-current (DC) to DC converter, a low drop-out (LDO) voltage regulator and a controller. The charging circuit provides the rechargeable energy storage device with a charging current based on power requirements of device under test and the state of charge, or storage, of the energy storage device.
Abstract:
A test interface board comprises at least one switch matrix including a plurality of switching elements that connect a plurality of connection nodes to each other. The at least one switch matrix is configured to connect a plurality of channels of an automatic test equipment (ATE) to respective pin positions corresponding to a device under test (DUT) in response to switching control signals. The plurality of channels provide test operation signals for testing the DUT. A control logic is configured to generate the switching control signals based on pin configuration information of the DUT.