Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
A semiconductor device may include a bottom sub-electrode on a substrate, a top sub-electrode on the bottom sub-electrode, a dielectric layer covering the bottom and top sub-electrodes, and a plate electrode on the dielectric layer. The top sub-electrode may include a step extending from a side surface thereof, which is adjacent to the bottom sub-electrode, to an inner portion of the top sub-electrode. The top sub-electrode may include a lower portion at a level that is lower than the step and an upper portion at a level which is higher than the step. A maximum width of the lower portion may be narrower than a minimum width of the upper portion. The maximum width of the lower portion may be narrower than a width of a top end of the bottom sub-electrode. The bottom sub-electrode may include a recess in a region adjacent to the top sub-electrode.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
Disclosed is an integrated circuit, which counts parameters required for a dynamic voltage frequency scaling (DVFS) operation. The integrated circuit includes: an event block accessing a bus, which connects processing devices to each other, and outputting an event signal, based on data transmitted through the bus; a clock counter counting the number of clock signals received from a clock management unit; a plurality of performance counters respectively counting parameters used to calculate a workload, based on the event signal; an interface receiving an operation signal from the DVFS governor, which determines an operation frequency and an operation voltage of a processing device based on the workload, and transmitting the number of clock signals and the parameters to the DVFS governor; and a controller controlling operations of the event block, the clock counter, and the plurality of performance counters, based on the operation signal.
Abstract:
Disclosed is an integrated circuit, which counts parameters required for a dynamic voltage frequency scaling (DVFS) operation. The integrated circuit includes: an event block accessing a bus, which connects processing devices to each other, and outputting an event signal, based on data transmitted through the bus; a clock counter counting the number of clock signals received from a clock management unit; a plurality of performance counters respectively counting parameters used to calculate a workload, based on the event signal; an interface receiving an operation signal from the DVFS governor, which determines an operation frequency and an operation voltage of a processing device based on the workload, and transmitting the number of clock signals and the parameters to the DVFS governor; and a controller controlling operations of the event block, the clock counter, and the plurality of performance counters, based on the operation signal.
Abstract:
A semiconductor device may include a bottom sub-electrode on a substrate, a top sub-electrode on the bottom sub-electrode, a dielectric layer covering the bottom and top sub-electrodes, and a plate electrode on the dielectric layer. The top sub-electrode may include a step extending from a side surface thereof, which is adjacent to the bottom sub-electrode, to an inner portion of the top sub-electrode. The top sub-electrode may include a lower portion at a level that is lower than the step and an upper portion at a level which is higher than the step. A maximum width of the lower portion may be narrower than a minimum width of the upper portion. The maximum width of the lower portion may be narrower than a width of a top end of the bottom sub-electrode. The bottom sub-electrode may include a recess in a region adjacent to the top sub-electrode.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.
Abstract:
A semiconductor device includes a plurality of capacitors disposed on a substrate and a support pattern supporting upper portions and lower portions of the capacitors. Each of the capacitors includes a lower electrode, an upper electrode, and a dielectric layer between the lower and upper electrodes. The lower electrode includes a first electrode portion electrically connected to the substrate and having a solid shape and a second electrode portion stacked on the first electrode portion and having a shape comprising an opening therein. The support pattern includes an upper pattern contacting sidewalls of top end portions of the lower electrodes and a lower pattern vertically spaced apart from the upper pattern. The lower pattern contacts sidewalls under the top end portions of the lower electrodes.