Abstract:
The image reconstruction method includes performing a forward projection of a first image of an object using a line integral-based value and a point spread function (PSF)-based value to acquire a forward projection value, and performing a back projection of raw image data using the forward projection value to acquire a second image of the object.
Abstract:
An X-ray imaging apparatus includes: an X-ray source configured to irradiate X-rays to an object; an X-ray detector configured to obtain a first X-ray image of the object; a noise-reduced image creator configured to generate a noise-reduced image in which a noise is reduced from the first X-ray image; a noise image creator configured to generate a noise image based on differences between the first X-ray image and the noise-reduced image; an edge image creator configured to generate, from the noise image, an edge image in which edges are enhanced; an output image creator configured to combine the noise-reduced image with the edge image to generate a second X-ray image; and a display configured to display the second X-ray image. By enhancing edges while reducing noise, an image with high definition and high quality may be output and a user can obtain accurate information from the image.
Abstract:
An X-ray apparatus includes an X-ray source configured to radiate X-rays onto an object, an X-ray detector configured to detect X-rays having penetrated through the object among the radiated X-rays and obtain pieces of raw data of different energy bands based on the detected X-rays, a raw image obtainer configured to obtain raw images in which different materials constituting the object are enhanced using the pieces of raw data, and an image processor configured to process the raw images and generate an X-ray image of the object based on the processed raw images.
Abstract:
An imaging method includes calculating a derivative back projection (DBP) result value using a DBP method with respect to a projection image of a field of view (FOV) inside an object, and reconstructing an image of the FOV by applying a regulation function to the FOV while reconstructing the image of the FOV using the DBP result value.
Abstract:
A refrigerator including a main body including a storage room, a door coupled to the main body and rotatable in front of a side of the storage room, and including a display on a front surface of the door, a camera disposed to capture the storage room, and a processor configured to acquire an augmented-reality object corresponding to a food included in an image captured by the camera using a trained artificial intelligence model, to control the display to display the acquired augmented-reality object and the captured image as being overlapped with each other, and based on a user input being acquired while the acquired augmented-reality object is displayed, to provide a response to the user input based on the acquired augmented-reality object. The refrigerator can utilize an artificial intelligence model trained according to at least one of machine learning, neural network or deep learning algorithm.
Abstract:
A refrigerator including a main body including a storage room, a door coupled to the main body and rotatable in front of a side of the storage room, and including a display on a front surface of the door, a camera disposed to capture the storage room, and a processor configured to acquire an augmented-reality object corresponding to a food included in an image captured by the camera using a trained artificial intelligence model, to control the display to display the acquired augmented-reality object and the captured image as being overlapped with each other, and based on a user input being acquired while the acquired augmented-reality object is displayed, to provide a response to the user input based on the acquired augmented-reality object. The refrigerator can utilize an artificial intelligence model trained according to at least one of machine learning, neural network or deep learning algorithm.
Abstract:
An X-ray imaging apparatus includes a back projected image generator configured to generate a back projected image with respect to a projected image of a field of view (FOV), and an image restorer configured to obtain frequency components of the back projected image, generate restored images for frequencies based on the frequency components of the back projected image, and generate a restored image with respect to the back projected image by synthesizing the restored images for the frequencies.