Abstract:
A redox flow battery including a cathode cell having a cathode and a catholyte solution; an anode cell having an anode and an anolyte solution; and an ion exchange membrane disposed between the cathode cell and the anode cell, wherein the catholyte solution and the anolyte solution each include an electrolyte, wherein the electrolyte includes a plurality of metal-ligand coordination compounds, wherein at least one of the metal-ligand coordination compounds includes two or more different ligands, and wherein a dipole moment of the metal-ligand coordination compound is greater than 0.
Abstract:
A composition for filling an ion exchange membrane including a first aromatic vinyl monomer having a halogenated alkyl group or a quaternary ammonium salt group, a method of preparing the ion exchange membrane, an ion exchange membrane prepared using the method, and a redox flow battery including the ion exchange membrane.
Abstract:
A composition for filling an ion exchange membrane, a method of preparing the ion exchange membrane, the filled ion exchange membrane, and a redox flow battery using the filled ion exchange membrane. The composition includes an ion conductive material and a water soluble support.
Abstract:
An organic electrolyte solution including a solvent; an electrolyte including a metal-ligand coordination compound; and an additive including a hydrophobic group and a metal affinic group.
Abstract:
An anode including a current collector; an anode active material layer disposed on the current collector, and a lithium-containing organic compound disposed on a surface of the anode active material layer
Abstract:
A magnesium compound represented by Formula 1 wherein the magnesium compound is dissolvable in an ether solvent, an electrolyte solution for magnesium batteries that includes the magnesium compound and a magnesium battery including the electrolyte solution are provided: wherein, in Formula 1, X1 is a halogen atom; and at least one of X2 and X3 each independently is an electron withdrawing group, wherein, when X2 or X3 is not an electron withdrawing group, X2 or X3 is a hydrogen atom, a C1-C20 alkyl group, or a C6-C20 aryl group.
Abstract:
Provided is a redox flow battery including a positive electrode cell having a positive electrode and a catholyte solution; a negative electrode cell having a negative electrode and an anolyte solution; and an ion-exchange membrane disposed between the positive electrode cell and the negative electrode cell, wherein the catholyte solution and the anolyte solution each includes a non-aqueous solvent, a supporting electrolyte, and an electrolyte, and wherein the electrolyte includes a metal-ligand coordination compound, and at least one of the metal-ligand coordination compounds includes a ligand having an electron donating group.
Abstract:
An organic electrolyte for magnesium batteries including an ether solvent; a magnesium compound represented by Formula 1 dissolved in the ether solvent; and a Lewis acid: wherein CY1 is an optionally substituted C6-C50 aromatic ring, X1 is, each independently, an electron withdrawing group, X2 is a halogen, n is an integer of 1 to 10, and an angle between a CY1-X1 bond and a CY1-Mg bond is 150 degrees or less.