Abstract:
An optical film includes: a liquid crystal coating; and a base layer on the liquid crystal coating, wherein the liquid crystal coating has reversed wavelength dispersion and in-plane retardation for a reference wavelength ranging from 126 nm to 153 nm, and the base layer has in-plane retardation ranging from about 0 to about 50 nm and out-of-plane retardation ranging from about 0 nm to about 100 nm.
Abstract:
A compensation film includes: a first retardation layer including a polymer; a second retardation layer including a liquid crystal having positive birefringence; and a compensation layer including a liquid crystal having a vertical alignment property, where an angle between slow axes of the first and second retardation layers is in a range of about 85 to about 95 degrees, an entire in-plane retardation (Re0) of the first retardation layer, the second retardation layer and the compensation layer for wavelengths of 450 nm, 550 nm and 650 nm satisfy the following inequation: Re0(450 nm)
Abstract:
An optical film includes: a liquid crystal coating; and a base layer on the liquid crystal coating, wherein the liquid crystal coating has reversed wavelength dispersion and in-plane retardation for a reference wavelength ranging from 126 nm to 153 nm, and the base layer has in-plane retardation ranging from about 0 to about 50 nm and out-of-plane retardation ranging from about 0 nm to about 100 nm.
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
A compensation film includes: a first retardation layer including a polymer; a second retardation layer including a liquid crystal having positive birefringence; and a compensation layer including a liquid crystal having a vertical alignment property, where an angle between slow axes of the first and second retardation layers is in a range of about 85 to about 95 degrees, an entire in-plane retardation (Re0) of the first retardation layer, the second retardation layer and the compensation layer for wavelengths of 450 nm, 550 nm and 650 nm satisfy the following inequation: Re0(450 nm)
Abstract:
A compensation film includes a first retardation layer including a polymer having negative birefringence, and a second retardation layer including a liquid crystal having positive birefringence, where the first retardation layer has an in-plane retardation (Re1) of 320 nm to 1050 nm for incident light having wavelength of 550 nm, the second retardation layer has an in-plane retardation (Re2) of 180 nm to 910 nm for the incident light, an entire in-plane retardation (Re0) of the first and second retardation layers for the incident light is a difference between the in-plane retardations of the first and second retardation layers, an angle between slow axes of the first and second retardation layers is 85 to 95 degrees, and the entire in-plane retardation (Re0) of the first and second retardation layers for the wavelength of 450 nm, 550 nm and 650 nm satisfies Re0 (450 nm)
Abstract:
An optical film includes a polarization film including a polymer resin and a dichroic dye, and a phase delay layer disposed on the polarization film and including a liquid crystal.
Abstract:
An optical film includes: a liquid crystal coating; and a base layer on the liquid crystal coating, wherein the liquid crystal coating has reversed wavelength dispersion and in-plane retardation for a reference wavelength ranging from 126 nm to 153 nm, and the base layer has in-plane retardation ranging from about 0 to about 50 nm and out-of-plane retardation ranging from about 0 nm to about 100 nm.