Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Next generation of wireless cellular operation is expected to be deployed in higher frequency above 6 GHz (eg. 10 GHz˜100 GHz, also called mmWave and/or cmWave) due to availability of large amount of spectrum bandwidths. The physical layer of wireless cellular system in both DL and UL operating in mmWave/cmWave would be based on new air-interface different from that of LTE-A air-interface because the radio characteristics is different for mmWave/cmWave bands. The wireless system deployed in mmWave/cmWave system is expected to employ DL beam sweeping on broadcast control information to provide cell coverage to the UE which would result in excessive signaling overhead.
Abstract:
A method and an apparatus method are provided for transmitting uplink information including acknowledgement information in a wireless communication system. The method includes coding, by a terminal, uplink data and the acknowledgement information by using different coding schemes respectively; multiplexing, by the terminal, the coded uplink data and the coded acknowledgement information into the uplink information; and transmitting, by the terminal, the uplink information using resources. At least a portion of the uplink data is transmitted based on a first resource and the acknowledgement information is transmitted based on a second resource. The first resource and the second resource are adjacent to each other with respect to a time domain and a frequency domain. The acknowledgement information is located immediately adjacent to a pilot for the uplink data, and the pilot is used for demodulation of the uplink data.
Abstract:
A method and apparatus are provided for transmitting and receiving control information in a wireless communication system. A method in a base station includes transmitting, to a terminal, information associated with a number of Control Channel Elements (CCEs) included in control channels; identifying a set of control channel candidates based on an IDentifier (ID) of the terminal and the information associated with the number of CCEs, wherein each control channel candidate includes one, two, four, or eight CCEs; selecting at least one control channel candidate from among the set of control channel candidates; and transmitting the control information to the terminal via the selected at least one control channel candidate.
Abstract:
A method and apparatus are provided for transmitting and receiving control information in a wireless communication system. A method in a base station includes transmitting, to a terminal, information associated with a number of orthogonal frequency division multiplexing (OFDM) symbols carrying a control channel; determining a set of control channel candidates based on an identifier (ID) of the terminal and transmission time information, wherein each control channel candidate included in the set of control channel candidates consists of one of one, two, four, or eight control channel elements (CCEs); selecting at least one control channel candidate from among the set of control channel candidates; and transmitting the control information to the terminal through the selected at least one control channel candidate.
Abstract:
A method and an apparatus for generating a sequence including a demodulation reference signal (DM RS) and a preamble in device-to-device (D2D) communications are provided. The method includes obtaining, by a controller of an apparatus, a synchronization identify of a synchronization signal used for the D2D communication, obtaining a group identify of a communication group where a terminal belongs, generating a DM RS sequence for the D2D communication based on at least one of the synchronization identity and the group identity, mapping the DM RS sequence to predetermined symbol positions in a subframe, and transmitting the DM RS sequence from the terminal through the subframe.
Abstract:
A method and apparatus are provided for transmitting control information in a base station for a wireless communication system. The method includes receiving, from a terminal, a channel quality indicator (CQI); determining at least one control channel element (CCE) for a physical downlink control channel (PDCCH) based on the received CQI and an identifier (ID) of the terminal; and transmitting, to the terminal, control information on the PDCCH including the determined at least one CCE. A number of the at least one CCE is determined based on the CQI.
Abstract:
A method for transmitting a random access preamble using a random access procedure in a mobile communication system. The random access preamble transmission method includes selecting, upon triggering of the random access procedure, one of random access preamble sets predefined between a User Equipment (UE) and an Evolved Node B (ENB) according to whether a radio channel condition is greater than a radio channel condition threshold and a size of a message that the UE will transmit after transmission of the random access preamble is greater than a minimum message size, randomly selecting a random access preamble from the selected random access preamble set, and transmitting the selected random access preamble to the ENB over a random access channel.
Abstract:
A method for configuring gain factors in a WCDMA telecommunication system is provided in which the gain factor for defining power required for normal reception of uplink data in an environment supporting an uplink service over an E-DCH can be configured using minimal signaling information. First gain factors for first TFs corresponding to a part of a TF set including a plurality of TFs available for an uplink service are received. One of the first TFs is determined as a reference TF for a second TF other than the first TFs in the TF set. Then, a second gain factor for the second TF is calculated using the first gain factor for the determined reference TF. The second gain factor is used for transmitting or receiving uplink data.
Abstract:
Methods and apparatus are provided in which data is received from a base station on a downlink data channel. It is determined whether a scheduling type of the downlink data channel is persistent or non-persistent. In case that the scheduling type is non-persistent, ACK/NACK information for the data is transmitted to the base station on a resource which is determined based on a first ACK/NACK resource allocation scheme. In case that the scheduling type is persistent and the data is initial persistent data, ACK/NACK information for the data is transmitted to the base station on a resource which is determined based on the first ACK/NACK resource allocation scheme. In case that the scheduling type is persistent and the data is persistent data following the initial persistent data, ACK/NACK information for the data is transmitted to the base station on a resource determined based on a second ACK/NACK resource allocation scheme.
Abstract:
A method and an apparatus for scheduling data in a wireless communication system are provided. The method includes checking first control information in a first subframe, checking a first block including second control information and first data based on the first control information in the first subframe, and decoding the first data based on the second control information in the first subframe. The first control information includes resource allocation information related to the first block, and the second control information includes one of channel state information about the first data, or resource allocation information related to a second block in a second subframe.