Abstract:
A pouch-type rechargeable battery according to one or more exemplary embodiments includes: an electrode assembly; an exterior material receiving the electrode assembly; and a sealing portion arranged at an edge of the exterior material, and including at least one metal particle and a resin surrounding the at least one metal particle, and an area ratio of the at least one metal particle and the resin in a cross-section of the sealing portion cut along a direction that is perpendicular to a lengthwise direction of the sealing portion is from 1:99 to 6:4.
Abstract:
The present disclosure relates to an outer case for a flexible rechargeable battery, including a first resin layer configured to include a first patterned area, a moisture barrier layer disposed on the first resin layer to include a second patterned area, a second resin layer disposed on the moisture barrier layer to include a third patterned area, and a stress relaxation layer configured to cover the third patterned area.
Abstract:
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.
Abstract:
The present disclosure relates to a rechargeable battery including an electrode assembly that includes a first electrode, a second electrode, and a separator disposed between the first electrode and the second electrode, a first electrode tab that is electrically connected with the first electrode, and includes at least one first bent portion, a second electrode tab that is electrically connected with the second electrode, and includes at least one second bent portion, and exterior member that receives the electrode assembly, and a reinforcement member that is disposed in the first exterior member, while being disposed adjacent to at least one of the first electrode tab and the second electrode tab.
Abstract:
The present invention relates to a band assembly including a first outer connecting portion and a second outer connecting portion disposed to face each other, wherein the first outer connecting portion includes a first fastening hole and the second outer connecting portion includes a third fastening hole, an inner connecting portion disposed between the first outer connecting portion and the second outer connecting portion, wherein the inner connecting portion includes a second fastening hole that corresponds to the first fastening hole and the third fastening hole, and a rechargeable battery inserted into the first fastening hole, the second fastening hole, and the third fastening hole to connect the first outer connecting portion, the inner connecting portion, and the second outer connecting portion.
Abstract:
Provided is a stacked electrode assembly including: a lowermost electrode arranged on a lowermost portion of the stacked electrode assembly; an uppermost electrode arranged on an uppermost portion of the stacked electrode assembly; at least one unit stacked body arranged between the lowermost electrode and the uppermost electrode and including a positive electrode, a negative electrode, and a separator, the separator being arranged between the positive electrode and the negative electrode; and a separator arranged between the lowermost electrode and the at least one unit stacked body, and between the at least one unit stacked body and the uppermost electrode. A capacity and energy density of a lithium battery may be improved by employing an electrode including a mesh electrode current collector as the lowermost electrode or the uppermost electrode of the stacked electrode assembly.
Abstract:
A flexible rechargeable battery includes a first conductive substrate, a second conductive substrate, and a seal. The first conductive substrate includes a first protrusion. The second conductive substrate faces the first conductive substrate and includes a second protrusion. The seal is located along at least one edge of the first conductive substrate and the second conductive substrate, and includes at least one sealing metal layer and at least one sealing resin layer.
Abstract:
A secondary battery including an electrode assembly; a first case that includes an electrode assembly accommodating space; and a second case that coupled to the first case, the second case facing the first case and having a convex-concave pattern.
Abstract:
Provided is a lithium cobalt composite oxide for a lithium secondary battery represented by Formula 1 below and having a polycrystalline state, a method of preparing the same, a positive electrode for a lithium battery including the lithium cobalt composite oxide, and a lithium secondary battery including a positive electrode, which includes the lithium cobalt composite oxide. LiaCobOc Formula 1 In Formula 1, a is an integer from 0.9 to 1.1, b is an integer from 0.980 to 1.0000, and c is an integer from 1.9 to 2.1. Also included is a method of manufacture therefor.