Abstract:
A method for manufacturing a nonaqueous electrolyte secondary battery which includes an electrode assembly, a housing with an opening and contains the electrode assembly, and a sealing member sealing the opening, the electrode assembly comprising a positive electrode and a negative electrode. The positive electrode includes a positive electrode active material, lithium carbonate, and lithium phosphate, the negative electrode comprising a negative electrode active material. The method includes placing the electrode assembly in the housing, and placing a nonaqueous electrolyte containing lithium fluorosulfonate in the housing.
Abstract:
A method for manufacturing a nonaqueous electrolyte secondary battery which includes an electrode assembly, a housing with an opening and contains the electrode assembly, and a sealing member sealing the opening, the electrode assembly comprising a positive electrode and a negative electrode. The positive electrode includes a positive electrode active material, lithium carbonate, and lithium phosphate, the negative electrode comprising a negative electrode active material. The method includes placing the electrode assembly in the housing, and placing a nonaqueous electrolyte containing lithium fluorosulfonate in the housing.
Abstract:
A nonaqueous electrolyte secondary battery includes an electrode assembly including a negative plate and a positive plate including a positive electrode active material mix layer, a nonaqueous electrolyte, a battery case that houses the electrode assembly and the nonaqueous electrolyte, and a pressure-sensitive safety system that operates when the pressure in the battery case reaches a value greater than or equal to a predetermined value. The positive electrode active material mix layer contains lithium carbonate and lithium phosphate. The average particle size of lithium carbonate contained in the positive electrode active material mix layer is greater than the average particle size of lithium phosphate contained in the positive electrode active material mix layer. The number of particles of lithium carbonate contained in the positive electrode active material mix layer is less than the number of particles of lithium phosphate contained in the positive electrode active material mix layer.
Abstract:
A nonaqueous electrolyte secondary battery includes an electrode assembly including a negative plate and a positive plate including a positive electrode active material mix layer, a nonaqueous electrolyte, a battery case that houses the electrode assembly and the nonaqueous electrolyte, and a pressure-sensitive safety system that operates when the pressure in the battery case reaches a value greater than or equal to a predetermined value. The positive electrode active material mix layer contains lithium carbonate and lithium phosphate. The average particle size of lithium carbonate contained in the positive electrode active material mix layer is greater than the average particle size of lithium phosphate contained in the positive electrode active material mix layer. The number of particles of lithium carbonate contained in the positive electrode active material mix layer is less than the number of particles of lithium phosphate contained in the positive electrode active material mix layer.
Abstract:
A nonaqueous electrolyte secondary battery includes an electrode assembly including a negative electrode and a positive electrode including a positive electrode active material mix layer containing a lithium-transition metal composite oxide which is a positive electrode active material; a nonaqueous electrolyte; and a battery case that houses the electrode assembly and the nonaqueous electrolyte. The positive electrode active material has a film formed thereon and the film contains 0.04 μmol to 0.19 μmol of sulfur per square meter of the specific surface area of particles of the positive electrode active material.
Abstract:
A non-aqueous electrolyte secondary battery comprises: a positive electrode core; a positive electrode plate having a positive electrode active material layer which is formed on the positive electrode core and contains a positive electrode active material; a negative electrode core; a negative electrode plate having a negative electrode active material layer which is formed on the negative electrode core and contains a negative electrode active material; a separator disposed between the positive and negative electrode plates; and a non-aqueous electrolytic solution, wherein the non-aqueous electrolytic solution contains lithium bis(oxalate) borate, and the value of A/B is 2-11, where A (μmol) is the total amount of lithium bis(oxalate) borate contained in the non-aqueous electrolytic solution, and B(m2) is the total area of the negative electrode active material contained in the region of the negative electrode active material layer facing the positive electrode active material layer with the separator therebetween.
Abstract:
A nonaqueous electrolyte secondary battery includes a prismatic housing having an opening and a sealing member sealing the opening. The prismatic housing contains a flat-wound electrode assembly and a nonaqueous electrolyte. The flat-wound electrode assembly includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode substrate and a positive electrode active material mixture layer formed on the positive electrode substrate. The positive electrode active material mixture layer contains lithium carbonate and lithium phosphate. The nonaqueous electrolyte contains lithium fluorosulfonate.
Abstract:
A nonaqueous electrolyte secondary battery includes a prismatic housing having an opening and a sealing member sealing the opening. The prismatic housing contains a flat-wound electrode assembly and a nonaqueous electrolyte. The flat-wound electrode assembly includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode substrate and a positive electrode active material mixture layer formed on the positive electrode substrate. The positive electrode active material mixture layer contains lithium carbonate and lithium phosphate. The nonaqueous electrolyte contains lithium fluorosulfonate.