Abstract:
A method for evaluating a planned well trajectory for avoidance of collision with an existing wellbore includes constructing a bounding box about the planned well trajectory and a bounding box for a trajectory of at least one existing wellbore. If there is no intersection between the bounding boxes, the planned well trajectory is used for drilling a well.
Abstract:
A method for drilling a subterranean wellbore includes rotating a drill string in the wellbore to drill. The drill string includes a roll-stabilized housing deployed in a drill collar and survey sensors deployed in the roll-stabilized housing. Sensor measurements are acquired while the drill string is rotating. High bandwidth accelerometer measurements may be obtained by combining triaxial accelerometer measurements and gyroscopic sensor measurements. Survey parameters, including a wellbore azimuth, may be computed from the high bandwidth accelerometer measurements. Triaxial magnetometer measurements may be processed to compute an eddy current induced wellbore azimuth error which may be removed from a previously computed wellbore azimuth to obtain a corrected wellbore azimuth.
Abstract:
A method for automatically evaluating a survey of a subterranean wellbore includes receiving downhole navigation sensor measurements and automatically evaluating surface sensor data obtained at substantially the same time as the navigation sensor measurements to determine whether or not the navigation sensor measurements were obtained during satisfactory wellbore survey conditions. The navigation sensor measurements are evaluated to determine whether or not they meet certain predetermined conditions necessary for obtaining a satisfactory survey. A survey recommendation is automatically generating based on the automatic evaluations performed.
Abstract:
A method for drilling a subterranean wellbore includes rotating a drill string in the wellbore to drill. The drill string includes a roll-stabilized housing deployed in a drill collar and survey sensors deployed in the roll-stabilized housing. Sensor measurements are acquired while the drill string is rotating. High bandwidth accelerometer measurements may be obtained by combining triaxial accelerometer measurements and gyroscopic sensor measurements. Survey parameters, including a wellbore azimuth, may be computed from the high bandwidth accelerometer measurements. Triaxial magnetometer measurements may be processed to compute an eddy current induced wellbore azimuth error which may be removed from a previously computed wellbore azimuth to obtain a corrected wellbore azimuth.
Abstract:
Aspects of the disclosure can relate to simulating expected sensor values associated with a drill tool (e.g., a drill assembly) before drilling to monitor the sensor. A planned trajectory for the drill assembly is received, where the planned trajectory is associated with a borehole to be drilled by the drill assembly along a geographic path. Next, an expected position for the drill assembly is determined along the geographic path. Then, an expected sensor value for a sensor associated with the drill assembly is simulated at the expected position. Next, an actual sensor value at an actual position corresponding to the expected position is determined. Then, the expected sensor value and the actual sensor value are dynamically displayed together at a user interface.
Abstract:
A method for evaluating a planned well trajectory for avoidance of collision with an existing wellbore includes constructing a bounding box about the planned well trajectory and a bounding box for a trajectory of at least one existing wellbore. If there is no intersection between the bounding boxes, the planned well trajectory is used for drilling a well.