Abstract:
Systems and methods for monitoring a crude oil blending process use nuclear magnetic resonance (NMR) sensors which investigate properties of a plurality of crude oil streams that are mixed together to form a crude oil blend. An NMR sensor is also used to investigate the properties of the crude oil blend. The investigated properties may include viscosity. Resulting determinations may be used to control the input streams so that the output stream meets desired criteria. Additional sensors such as spectroscopy sensors, viscometers, and densitometers may be used in conjunction with the NMR sensors.
Abstract:
A method for determining permittivity of a rock formation mineral matrix includes measuring a permittivity of a sample of the rock. A fractional volume of pore space in the sample is determined. A mixing law and a permittivity of a fluid filling the pore space are used to determine the permittivity of the formation mineral matrix from the measured permittivity.
Abstract:
A method for testing an unconventional core sample is provided. The method involves loading the unconventional core sample into a sample holder and introducing fluid into the sample holder at an elevated pressure such that fluid is injected into the internal pore space of the unconventional core sample in order to resaturate the unconventional core sample with the fluid, wherein the fluid is selected from the group including a hydrocarbon fluid and a water-based formation fluid. An apparatus and a system used in combination with the method are also provided.
Abstract:
A method for determining permittivity of a rock formation mineral matrix includes measuring a permittivity of a sample of the rock. A fractional volume of pore space in the sample is determined. A mixing law and a permittivity of a fluid filling the pore space are used to determine the permittivity of the formation mineral matrix from the measured permittivity.
Abstract:
Methods and systems are provided that combine NMR and IR spectroscopy measurements on a rock sample to determine data representing at least one property of the rock sample. In one embodiment, cuttings can be split into first and second lots. Results of an NMR measurement performed on the first lot of cuttings without cleaning can be analyzed to determine pore volume of the cuttings. Results of an IR spectroscopy measurement performed on the second lot of cuttings after solvent cleaning can be analyzed to determine matrix density of the cuttings. Porosity can be determined from the pore volume and matrix density of the cuttings. In another embodiment, combined NMR and IR spectroscopy measurements can be performed on an unprepared rock sample (without solvent cleaning) to characterize properties of kerogen in the rock sample and porosity. In another aspect, a method is provided that employs multi-nucleic NMR measurements to determine porosity.
Abstract:
A method for testing an unconventional core sample is provided. The method involves loading the unconventional core sample into a sample holder and introducing fluid into the sample holder at an elevated pressure such that fluid is injected into the internal pore space of the unconventional core sample in order to resaturate the unconventional core sample with the fluid, wherein the fluid is selected from the group including a hydrocarbon fluid and a water-based formation fluid. An apparatus and a system used in combination with the method are also provided.
Abstract:
Methods and systems are provided that combine NMR and IR spectroscopy measurements on a rock sample to determine data representing at least one property of the rock sample. In one embodiment, cuttings can be split into first and second lots. Results of an NMR measurement performed on the first lot of cuttings without cleaning can be analyzed to determine pore volume of the cuttings. Results of an IR spectroscopy measurement performed on the second lot of cuttings after solvent cleaning can be analyzed to determine matrix density of the cuttings. Porosity can be determined from the pore volume and matrix density of the cuttings. In another embodiment, combined NMR and IR spectroscopy measurements can be performed on an unprepared rock sample (without solvent cleaning) to characterize properties of kerogen in the rock sample and porosity. In another aspect, a method is provided that employs multi-nucleic NMR measurements to determine porosity.
Abstract:
Systems and methods for monitoring a crude oil blending process use nuclear magnetic resonance (NMR) sensors which investigate properties of a plurality of crude oil streams that are mixed together to form a crude oil blend. An NMR sensor is also used to investigate the properties of the crude oil blend. The investigated properties may include viscosity. Resulting determinations may be used to control the input streams so that the output stream meets desired criteria. Additional sensors such as spectroscopy sensors, viscometers, and densitometers may be used in conjunction with the NMR sensors.