Abstract:
A reader includes top and bottom reader stacks disposed between a top and bottom shield. The top and bottom reader stacks are offset relative to each other in a downtrack direction. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A split middle shield is between the top and bottom reader stacks and the top and bottom side shields. The split middle shield includes top and bottom portions separated by an isolation layer, the top and bottom portions respectively coupled to the top and bottom reader stacks.
Abstract:
A magnetic stack is disclosed. The magnetic stack includes a magnetically responsive lamination that includes a ferromagnetic free layer, a synthetic antiferromagnetic (SAF) structure, and a spacer layer positioned between the ferromagnetic free layer and the SAF structure. The magnetically responsive lamination is separated from a sensed data bit stored in an adjacent medium by an air bearing surface (ABS). The stack also includes a first antiferromagnetic (AFM) structure coupled to the SAF structure a predetermined offset distance from the ABS, and a second AFM structure that is separated from the first AFM structure by a first shield layer.
Abstract:
The implementations disclosed herein provide for a spin transport sensor including a synthetic antiferromagnet (SAF) adjacent a shield element. The SAF extends to an air-bearing surface (ABS) and provides a current path from a current source to an ABS-region of a spin conductor layer. Spin current diffuses from the spin conductor layer to an adjacent free layer, which generates a measurable electrical voltage in a free layer of the spin transport sensor. The SAF serves as both a magnetic shield and a spin injector to the spin conductor layer.
Abstract:
The implementations disclosed herein provide for a spin transport sensor including a synthetic antiferromagnet (SAF) adjacent a shield element. The SAF extends to an air-bearing surface (ABS) and provides a current path from a current source to an ABS-region of a spin conductor layer. Spin current diffuses from the spin conductor layer to an adjacent free layer, which generates a measurable electrical voltage in a free layer of the spin transport sensor. The SAF serves as both a magnetic shield and a spin injector to the spin conductor layer.
Abstract:
A magnetic element may be constructed in accordance with various embodiments as a data reader. The magnetic element can have at least a magnetic reader that contacts a top shield and is separated from a side shield on an air bearing surface (ABS). The side shield may be antiferromagnetically coupled to the top shield via a coupling layer disposed between the top and side shields.
Abstract:
Tolerances for manufacturing reader structures for transducer heads continue to grow smaller and storage density in corresponding storage media increases. Reader stop layers may be utilized during manufacturing of reader structures to protect various layers of the reader structure from recession and/or scratches while processing other non-protected layers of the reader structure. For example, the stop layer may have a very low polish rate during mechanical or chemical-mechanical polishing. Surrounding areas may be significantly polished while a structure protected by a stop layer with a very low polish rate is substantially unaffected. The stop layer may then be removed via etching, for example, after the mechanical or chemical-mechanical polishing is completed.
Abstract:
A reader includes top and bottom reader stacks that are offset relative to each other in a downtrack direction and disposed between a top shield and a bottom shield. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A middle shield is between the top and bottom reader stacks and the top and bottom side shields. The middle shield includes a common electrical conductive path coupled to the top and bottom reader stacks. A middle lead is coupled to an edge of the middle shield.
Abstract:
A reader includes top and bottom reader stacks disposed between a top and bottom shield. The top and bottom reader stacks are offset relative to each other in a downtrack direction. Top side shields surround the top reader stack in a crosstrack direction, and bottom side shields surround the bottom reader stack in the crosstrack direction. A split middle shield is between the top and bottom reader stacks and the top and bottom side shields. The split middle shield includes top and bottom portions separated by an isolation layer, the top and bottom portions respectively coupled to the top and bottom reader stacks.
Abstract:
A data reader generally capable of sensing data bits may be configured at least with a magnetic stack that has free and fixed magnetization structures atop a magnetic seed layer. A bottom shield may be positioned contactingly adjacent the magnetic stack opposite a top shield with the bottom shield having a fixed pinning magnetization set to a predetermined magnetic orientation.
Abstract:
A magnetic writer includes a write element having a first domain pattern when in a quiescent state and a second domain pattern when in an active state. A biasing structure is configured to induce the write element into the first domain pattern when the magnetic writer is in the quiescent state.