Abstract:
The present invention is to provide a monitoring system including a plurality of motion sensing carpets and a monitoring device (e.g., a computer) electrically connected to one of the motion sensing carpets serving as a control unit while all the other motion sensing carpets directly or indirectly joined to the control unit serves as auxiliary units. The monitoring device is able to carry out a topology algorithm and then establish a topology matrix of the motion sensing carpets in a stepwise manner so as to obtain the relative location of each motion sensing carpet. When any of the motion sensing carpets is subjected to pressure caused by a senior member or child in the family toppling over thereon (e.g., an accident) and generates a sensing signal, the monitoring device can rapidly know from the topology matrix the exact location of the accident according to the sensing signal.
Abstract:
A motion-sensing floor mat, an assembly of such floor mats, and a monitoring system with such floor mats are provided; wherein the floor mat can be joined with another such floor mat and electrically connected to a monitoring device to form the monitoring system; the monitoring device stores a queue list and a topology matrix and uses a topological algorithm to store the identification tag of each such floor mat detected into the queue list in order, to gradually establish the topology matrix for the floor mats detected; and to thereby obtain the relative positions of the floor mats detected. When any of the floor mats is subjected to pressure (e.g., when someone falls on the floor mat accidentally) and generates a sensing signal, the monitoring device can pinpoint the position of that floor mat (i.e., the location of the fall) rapidly according to the topology matrix.
Abstract:
The present invention is to provide an imperceptible motion sensing device, which includes a non-conductive elastomer made of a pliable and elastic non-conductor (e.g., polyurethane) and having a bumpy side formed with at least one sunken portion thereon, at least one conductive fiber positioned in the at least one sunken portion respectively (e.g., by sewing), and a conductive elastomer made of a pliable and elastic conductor (e.g., a conductive foam or conductive rubber) and provided on the bumpy side of the non-conductive elastomer. When the sensing device is compressed by an external force, corresponding portions of the conductive elastomer and the non-conductive elastomer are compressed and deformed, causing contact and hence electrical connection between the conductive elastomer and the at least one conductive fiber. Thus, the imperceptible motion sensing device not only provides more accurate and more sensitive signal detection, but also ensures consistent performance even after long-term use.