Abstract:
A display module includes a display element, a light-guiding optical device, and a control unit configured to perform distortion correction including correction of a chromatic aberration of magnification. The light-guiding optical device is constituted of an optical system having non-axisymmetry in an up-and-down direction with respect to the imaging light entering the light-guiding optical device, and includes a first optical member having positive refractivity, a second optical member having positive refractivity, and a first reflection surface configured to reflect the imaging light toward a pupil position. The refractivity of the first optical member is greater than the refractivity of the second optical member. An abbe number of a constituent material of the first optical member is greater than an abbe number of a constituent material of the second optical member. The control unit performs distortion correction by a different distortion correction amount for each color light.
Abstract:
An image display device includes an image light generation device configured to generate image light, and a deflection member configured to deflect the image light to form an exit pupil, in which the image light generation device includes a first light source unit configured to emit first light, a second light source unit configured to emit second light within a same frequency band as the first light and having a wavelength band different from a wavelength band of the first light, and a combining optical member configured to at least partially superimpose the first light and the second light, the deflection member includes a first diffraction member corresponding to the wavelength band of the first light and a second diffraction member corresponding to the wavelength band of the second light, and the first diffraction member and the second diffraction member overlap when viewed from the exit pupil.
Abstract:
Image formation is performed by using a synthesis optical system, and in a first dichroic film and a second dichroic film that are the synthesis surfaces in the synthesis optical system, a direction in which the cross axis that is the intersecting axis extends corresponds to a direction of alignment of eyes of an observer.
Abstract:
A display device of the present disclosure includes, along an optical path of imaging light emitted from an imaging light generation device, a first optical portion having a positive power, a second optical portion including a first diffraction element and having a positive power, a third optical portion having a positive power, and a fourth optical portion including a second diffraction element and having a positive power. In the optical path, the first diffraction element and the second diffraction element diffract the imaging light at least along a primary diffraction plane and a secondary diffraction plane orthogonal to the primary diffraction plane, and a deflection force of the imaging light in the primary diffraction plane is greater than a deflection force of the imaging light in the secondary diffraction plane.
Abstract:
A head-mounted display apparatus according to an aspect of the present disclosure includes an imaging light generating device, a first deflection element including a first deflection section configured to deflect imaging light in a first direction and a second deflection section configured to deflect the imaging light in a second direction, a first diffraction element, and a second diffraction element. When a plane surrounded by the principal ray passing plane, the first principal ray, the second principal ray, and the first deflection section is taken as a first plane, and a plane surrounded by the second deflection section, the first principal ray, the second principal ray, and the first diffraction element is taken as a second plane, the first plane overlaps with at least a part of the second plane when viewed from the third direction and does not overlap with the second plane when viewed from the fourth direction.
Abstract:
A printer includes a transport unit that transports continuous paper, a medium support unit in which a support surface that is capable of supporting continuous paper that is transported by a transport unit, and first concave sections, which are indented from the support surface, are formed, and an image capture unit, which is disposed on a lower side of the support surface, and which captures an image of a lower surface of the continuous paper.
Abstract:
An imaging unit is provided with a cylindrical lens barrel, and an object-side lens which is disposed in the lens barrel and is fixed to the lens barrel using an adhesive. The lens barrel includes three abutting portions and three adhesive portions. The object-side lens abuts the three abutting portions in an optical axis direction of the object-side lens, and the adhesive portions are formed between an outer circumferential surface of the object-side lens and an inner circumferential surface of the lens barrel, and the adhesive is injected therein. The three adhesive portions are formed at an interval in a circumferential direction. The three adhesive portions and the three abutting portions do not overlap each other in plan view as seen from a vertical direction.
Abstract:
A transportation device includes a transportation unit that transports continuous paper, and an image capturing unit that has a light irradiator capable of irradiating the continuous paper which is transported by the transportation unit with light and detects a transportation amount of the continuous paper based on reflected light of the light irradiated onto the continuous paper by the light irradiator. The light irradiator is arranged so as to irradiate the continuous paper with light obliquely with respect to the detection region of the continuous paper from the width direction side of the continuous paper, which is orthogonal to the transportation direction of the continuous paper.
Abstract:
A display device of the present disclosure includes a substrate, a lens layer including a lens, a light-transmitting layer that contacts a lens surface of the lens, and has translucency, a pixel electrode disposed between the substrate and the lens layer, and a color filter disposed between the pixel electrode and the lens layer. The lens is disposed so as to correspond to the pixel electrode. A refractive index of a constituent material for the lens is lower than a refractive index of a constituent material for the light-transmitting layer.
Abstract:
A display device of the present disclosure includes, along an optical path of imaging light emitted from an imaging light generation device, a first optical portion having a positive power, a second optical portion including a first diffraction element and having a positive power, a third optical portion having a positive power, and a fourth optical portion including a second diffraction element and having a positive power. In the optical path, the first diffraction element and the second diffraction element diffract the imaging light at least along a primary diffraction plane and a secondary diffraction plane orthogonal to the primary diffraction plane, and a deflection force of the imaging light in the primary diffraction plane is greater than a deflection force of the imaging light in the secondary diffraction plane.