Abstract:
A fiber structure manufacturing apparatus includes: a defibration unit that pulverizes and defibrates a fiber raw material that contains fibers; a transportation unit that transports a defibrated material after defibration by the defibration unit; a melting-material mixing unit that mixes a melting material into the defibrated material transported by the transportation unit; a fibrous web forming unit that forms a fibrous web by causing a mixture of the defibrated material and the melting material to accumulate; a sheet supplying unit that supplies a shape retainer sheet to the fibrous web; and a heating-and-pressing mechanism that forms a fiber structure by heating and pressing the fibrous web after the shape retainer sheet is supplied; wherein the sheet supplying unit supplies the shape retainer sheet in such a state that nap is raised on a surface, of the shape retainer sheet, that is to be in contact with the fibrous web.
Abstract:
A raw material supply device includes a housing that stores an aggregate of small pieces, a discharge port through which the small pieces are discharged from an inside of the housing, a rotor provided in the housing and including a protruding portion, and a magnet provided on the discharge port or on a downstream side of the discharge port. In addition, it is preferable that the raw material supply device further include a passage route that communicates with the discharge port and through which the small pieces pass, in which at least one pair of the magnets is disposed on one side and the other side via the passage route.
Abstract:
A sheet manufacturing apparatus can determine if the sheets supplied as feedstock have already been recycled. The sheet manufacturing apparatus has a supply unit configured to supply feedstock; a defibrating unit configured to defibrate the feedstock; an depositing unit configured to deposit defibrated material defibrated by the defibrating unit; a forming unit configured to form a sheet from a web laid by the depositing unit; a marking unit configured to apply a mark to at least one of the web and the sheet; and a reading unit configured to read the mark imparted to the feedstock when a sheet having mark imparted thereto is supplied as the feedstock.
Abstract:
A sheet manufacturing apparatus includes a defibrating unit configured to defibrate stock material in a dry process, a transferring tube configured to transfer the stock material to the defibrating unit, and a magnet unit arranged such that a magnetic surface is exposed an inside of the transferring tube without being protruded inner than an inner surface of the transferring tube.
Abstract:
Equipment for manufacturing a fiber structure in the present disclosure includes: a defibrator configured to pulverize and defibrate a fiber material containing fibers; a transport pipe through which a defibrated material defibrated by the defibrator is transported; a melting-material mixing section configured to mix a melting material into the defibrated material transported through the transport pipe; a fibrous-web forming machine configured to accumulate the defibrated material in which the melting material is mixed and form a fibrous web; a sheet supply section configured to supply a shape-maintaining sheet to the fibrous web; and a heating-and-compression mechanism configured to compress the shape-maintaining sheet and the fibrous web between planar plates and heat the shape-maintaining sheet and the fibrous web to a temperature equal to or higher than a temperature at which the melting material softens.
Abstract:
A defibrating unit includes a rotating unit and a fixing unit. The rotating unit and the fixing unit are arranged so as to be apart from each other with a gap therebetween in an intersecting direction that intersects with a rotating shaft of the rotating unit. The rotating unit includes a surface that stands up along an axial direction of the rotating shaft and that is arranged on a side section in the axial direction and arranged at a side where a defibration object is introduced. The fixing unit includes a plurality of plates that are layered in the axial direction, and the plates has a plurality of convexities that protrude at a side facing the rotating unit.
Abstract:
A sheet manufacturing apparatus includes a defibrating unit and a sheet forming unit. The defibrating unit includes a rotating unit and a housing, and is configured to carry out a dry-type defibrating process by rotating the rotating unit. The housing includes a cover portion and a fixing unit attached to the cover portion and spaced apart from the rotating unit in a direction perpendicular to an axial direction of the rotating unit so as to form a gap between the rotating unit and the fixing unit. The sheet forming unit is configured to form a sheet by accumulating defibrated material. The rotating unit includes a rotor having protruding sections on an outer circumference of the rotor, and a feeding blade arranged on a side section of the rotor on a side of an input section for the defibration object and configured to generate a flow of air.
Abstract:
A sheet manufacturing apparatus includes: a defibrating unit which defibrates a raw material including at least fibers; an addition unit which adds an additive agent to a defibrated material which is defibrated in the defibrating unit; and a sheet forming unit which forms a sheet by bonding the plurality of fibers to each other via the additive agent. According to a history of the raw material, an amount of the additive agent which is fed by the addition unit varies. In addition, there is provided a sheet manufacturing method, including: defibrating the raw material which includes at least fibers; adding the additive agent to the defibrated material; and bonding the plurality of fibers to each other via the additive agent. According to the history of the raw material, a feed amount of the additive agent with respect to the raw material varies.
Abstract:
An apparatus reduces material left between a shredding unit and a defibrating unit.A sheet manufacturing apparatus including a shredder that separates feedstock containing at least fiber into shreds in air; a defibrating unit that defibrates at least the shreds in air; and a forming unit that forms a sheet using defibrated material defibrated by the defibrating unit; wherein the defibration capacity, which is the amount defibrated per unit time by the defibrating unit, is greater than or equal to the shredding capacity, which is the amount shredded per unit time by the shredder.
Abstract:
A present sheet manufacturing apparatus, which manufactures a sheet including defibrated material and whiteness enhancer, is provided with a defibrating unit configured to defibrate a stock material that includes fibers, a whiteness enhancer feeding unit configured to feed the whiteness enhancer to the defibrated material defibrated in the defibrating unit. A feeding amount of the whiteness enhancer is changed based on whiteness information of the stock material or the defibrated material.