Abstract:
A graphene oxide used as a raw material of a conductive additive for forming an active material layer with high electron conductivity with a small amount of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery using the graphene oxide as a conductive additive is provided. The graphene oxide is used as a raw material of a conductive additive in a positive electrode for a nonaqueous secondary battery and, in the graphene oxide, the atomic ratio of oxygen to carbon is greater than or equal to 0.405.
Abstract:
A power storage device having high capacitance is provided. A power storage device with excellent cycle characteristics is provided. A power storage device with high charge and discharge efficiency is provided. A power storage device including a negative electrode with low resistance is provided. A negative electrode for the power storage device includes a current collector and an active material layer including a plurality of active material particles over the current collector. The active material particle is silicon, and the size of the silicon particle is greater than or equal to 0.001 μm and less than or equal to 7 μm.
Abstract:
A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
Abstract:
A positive electrode for a secondary battery which enables both good battery characteristics and electrode strength at a predetermined level, a secondary battery, and a method for fabricating the positive electrode for a secondary battery are provided. The positive electrode for a secondary battery includes a current collector and an active material layer over the current collector. The active material layer includes an active material, graphene, and a binder. A carbon layer is on a surface of the active material. The proportion of the graphene in the active material layer is greater than or equal to 0.1 wt % and less than or equal to 1.0 wt %.
Abstract:
A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
Abstract:
A graphene oxide used as a raw material of a conductive additive for forming an active material layer with high electron conductivity with a small amount of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery using the graphene oxide as a conductive additive is provided. The graphene oxide is used as a raw material of a conductive additive in a positive electrode for a nonaqueous secondary battery and, in the graphene oxide, the atomic ratio of oxygen to carbon is greater than or equal to 0.405.
Abstract:
A lithium-ion secondary battery with a high capacity retention rate is provided. In addition, a fabricating method of a lithium-ion secondary battery with a high capacity retention rate is provided. The lithium-ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte solution. The negative electrode includes a negative electrode active material layer. The electrolyte solution includes at least one of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and lithium bis(fluorosulfonyl)amide (LiFSA). The electrolyte solution includes vinylene carbonate (VC). A coating film including lithium oxide is on a surface of the negative electrode active material layer. A fabricating method of a lithium-ion secondary battery includes a first step of enclosing a positive electrode, a negative electrode, and an electrolyte solution in an exterior body, and a second step of annealing the exterior body enclosing the positive electrode, the negative electrode, and the electrolyte solution for 24 hours or longer after the first step. The annealing in the second step is performed at a temperature higher than or equal to 80° C. and lower than or equal to 100° C.
Abstract:
A graphene oxide used as a raw material of a conductive additive for forming an active material layer with high electron conductivity with a small amount of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery using the graphene oxide as a conductive additive is provided. The graphene oxide is used as a raw material of a conductive additive in a positive electrode for a nonaqueous secondary battery and, in the graphene oxide, the weight ratio of oxygen to carbon is greater than or equal to 0.405.
Abstract:
A positive electrode for a nonaqueous secondary battery including an active material layer which has sufficient electron conductivity with a low ratio of a conductive additive is provided. A positive electrode for a nonaqueous secondary battery including an active material layer which is highly filled with an active material, id est, including the active material and a low ratio of a conductive additive. The active material layer includes a plurality of particles of an active material with a layered rock salt structure, graphene that is in surface contact with the plurality of particles of the active material, and a binder.
Abstract:
A power storage device having high capacitance is provided. A power storage device with excellent cycle characteristics is provided. A power storage device with high charge and discharge efficiency is provided. A power storage device including a negative electrode with low resistance is provided. A negative electrode for the power storage device includes a current collector and an active material layer including a plurality of active material particles over the current collector. The active material particle is silicon, and the size of the silicon particle is greater than or equal to 0.001 μm and less than or equal to 7 μm.