Abstract:
A display panel and a display apparatus are provided. The display panel comprises an array substrate, a plurality of light emitting units disposed on the array substrate, each having a plurality of sub-light emitting units, and a plurality of fingerprint recognition units, configured to recognize fingerprints based on light reflected by a touch object to the fingerprint recognition units. Each fingerprint recognition unit is configured in coordination with at least one sub-light emitting unit. An orthogonal projection of each fingerprint recognition unit on the array substrate and an orthogonal projection of a corresponding sub-light emitting structure on the array substrate overlap with each other.
Abstract:
A display device, a fingerprint recognition calibration method for the display device and an electronic apparatus are disclosed. The fingerprint recognition calibration method includes: for any fingerprint recognition unit, during an initial calibration, displaying a first image by the display panel and acquiring a bright screen calibration fingerprint data by the fingerprint recognition unit and not displaying any image by the display panel and acquiring a dark screen calibration fingerprint data by the fingerprint recognition unit; during a fingerprint recognition, displaying the first image by the display panel and acquiring a bright screen fingerprint data by the fingerprint recognition unit; and performing calibration according to a calibration formula to obtain a calibrated fingerprint recognition data by the fingerprint recognition unit.
Abstract:
The present disclosure provides an array substrate including a display region and a frame region surrounding the display region. The display region further includes a plurality of second touch lines which are in parallel with the gate electrode lines, and each of the common electrode units is electrically connected to one of the second touch lines through a via hole. The frame region consists of a plurality of first switches and a plurality of test lines extending along a second direction, at least one end of each second touch line is connected to one of the first switches, and the test lines are electrically connected to the first switches.
Abstract:
Embodiments of the present disclosure provide a liquid crystal display panel, including: a first substrate; a second substrate; and a liquid crystal layer arranged therebetween; the first substrate includes a plurality of sub-pixels, the sub-pixels are divided into a plurality of repeat units arranged in an array, each repeat units includes a plurality of sub-units arranged in an array; in each repeat units, a first sub-unit, a second sub-unit and a third sub-unit are arranged in both a row direction and a column direction; and each of the first sub-unit, the second sub-unit and the third sub-unit includes at least two color sub-pixels and at least two highlight sub-pixels; in each sub-unit, a total number of the color sub-pixel is equal to a total number of the highlight sub-pixel; a total number of the first, second and third color sub-pixel in each sub-unit is the same.
Abstract:
Provided is a display panel, including an array substrate and a color film substrate; in the array substrate, every two adjacent columns of highlight sub-pixels form a group of highlight sub-pixels, at least one column of color sub-pixels is arranged between any two groups of highlight sub-pixels; the color film substrate includes a black matrix and color filters arranged in array, the black matrix includes a first and second black matrixes, the color filter includes columns of highlight color filters and columns of colored color filters, every two adjacent columns of highlight color filters form a group of highlight color filters, at least one column of colored color filters is arranged between any two groups of highlight color filters; on the color film substrate, orthogonal projection of the second black matrix does not overlap with orthogonal projection of the gap between the two adjacent columns of highlight color filters.
Abstract:
Embodiments of the present disclosure provide a display apparatus, a fingerprint identification method thereof, and an electronic device. The display apparatus includes: an organic light emitting layer and a fingerprint identification array. The organic light emitting layer includes a plurality of organic light emitting configurations. In a fingerprint identification phase, the plurality of organic light emitting configurations are arranged to emit light according to a first light emitting lattice and shift. A distance between any two adjacent organic light emitting configurations in the first light emitting lattice is greater than or equal to a minimum crosstalk-free distance. The minimum crosstalk-free distance is a maximum radius of a covering region formed on the fingerprint identification array by the light emitted from any organic light emitting configuration and then reflected through the first surface of the cover plate.
Abstract:
It is provided an array substrate and a display device. The array substrate includes a first substrate. Multiple first common electrodes and multiple second common electrodes are arranged above the first substrate, where the first and second common electrodes are configured to serve as common electrodes in a display phase and serve as touch sensing electrodes in a touch sensing phase. The first common electrodes are arranged in a different film layer from the second common electrodes, and projections of first common electrodes on the first substrate are adjacent to or overlap with projections of second common electrodes adjacent to the first common electrodes on the first substrate in a first direction.
Abstract:
A self-capacitive touch display panel and an array substrate thereof are provided in the disclosure. The array substrate includes a substrate, where gate lines, data lines, and a common electrode layer are provided on the substrate, and the gate lines and the data lines are insulated from each other and cross each other to define a plurality of pixel units arranged in an array; the pixel unit includes a pixel thin film transistor and a pixel electrode; the common electrode layer includes a plurality of touch-control units; a plurality of touch-control-driving thin film transistors are further provided on the substrate; and the touch-control unit is connected to drains of at least two touch-control-driving thin film transistors, the gates of the two touch-control-driving thin film transistors are connected to different gate lines, and the sources of the two touch-control-driving thin film transistors are connected to different data lines.
Abstract:
An array substrate, a method for fabricating the same and a display apparatus are provided. The array substrate includes first non-display areas and second non-display areas, where the first non-display areas and the second non-display areas are respectively areas between adjacent columns of the pixel units and are arranged alternately in the first direction; two data lines are disposed in each first non-display area, the two data lines are electrically connected to two columns of pixel units on two sides of the first non-display area where the two data lines are located; a gap is provided between two electrode units adjacent in the first direction, and the gap is located above a part of the second non-display area.
Abstract:
An array substrate, a display panel, a touch display device and a driving method for the same are disclosed. The array substrate includes: at least one pixel group pixel group including sub-pixel units arranged in four rows and two columns; three scan lines arranged row-wise and at least three data lines intersecting the scan lines. The sub-pixel units are electrically connected in a manner that different sub-pixel units are electrically connected to different combinations of a scan line and a data line.