Abstract:
The light diffusion member includes a substrate having light transmissivity, a plurality of light shielding layers, and light diffusion portions. The light diffusion portions have a light-emitting end surface, a light incident end surface which has a larger area than the area of the light-emitting end surface, and a reflecting face. Light which enters from the light incident end surface is anisotropically diffused in an azimuth direction seen from a normal direction of the substrate, and the height from the light incident end surface to the light-emitting end surface of the light diffusion portion is configured to be greater than the thickness of the light shielding layers. The azimuth direction where the diffusion by the light diffusion portion is relatively strong, and any one side making up the outer shape of the substrate, are generally parallel. The planar shape of the light shielding layers seen from the normal direction of one face of the substrate is an anisotropic shape having at least a major axis and a minor axis. A hollow portion sectioned by the formation regions of the light diffusion portions is formed in the formation region of the light shielding layers, and air is present in the hollow portion.
Abstract:
A light control film (light control member) includes a light transmissive base, a plurality of light shielding portions scattered over one surface of the base, and a light diffusing portion formed on the one surface of the base in a region other than regions in which the light shielding portions are formed. The light diffusing portion has a light exit end face and a light incident end face having a larger area than the light exit end face, and the height of the light diffusing portion is greater than the thickness of the light shielding portions. At least part of the opening of at least some of a plurality of air-cavities has a protrusion which is formed of a portion of the light diffusing portion that projects toward the inner side of the opening.
Abstract:
A light control film includes a light shielding layer and a light diffusion portion, and, when an area of a part where the light shielding layer is in contact with one surface of the base material is set to S1, and an area of a part where a low refractive index portion is exposed between light incidence end surfaces is set to S2, the light shielding layer and the light diffusion portion are formed so as to satisfy (S1−S2)/S1×100≧50.
Abstract:
A viewing angle extending film (a light diffusing member) includes a base material with optical transparency, a plurality of light-shielding layers dotted on one surface of the base material, and a transparent resin layer (optically transparent material layer) provided on the one surface of the base material. At least a light-shielding layer, which is part of the plurality of light-shielding layers, has a planar shape surrounded by a first figure and a second figure contained in the first figure or a planar shape surrounded by at least part of the first figure and at least part of the second figure overlaid with the first figure. Hollow portions are provided in a formation region of the light-shielding layers, each hollow portion being shaped so that a cross-sectional area obtained by cutting along a plane parallel to the one surface of the base material is large on the light-shielding layer side and is gradually decreased as being away from the light-shielding layer. A part other than the hollow portions is taken as a light transmitting portion.
Abstract:
In a liquid crystal display device including a light control film utilizing total reflection, a liquid crystal panel, and a directional backlight, the light control film includes a transparent base material, a light blocking layer, and a light diffusing portion. The light diffusing portion has a light output end surface on side closer to the transparent base material and a light input end surface on side opposite to the transparent base material, the light input end surface having a larger area than the light output end surface. A film thickness of the light diffusing portion is larger than a thickness of the light blocking layer. A material having a smaller refractive index than the light diffusing portion is present in a cavity defined by the light diffusing portion, and the film anisotropically diffuses light.
Abstract:
A display apparatus includes at least a light source, a display element, and an isotropic diffusion layer. When θ0 is an emission angle at which light from the light source has a maximum luminous flux ratio, θ1 is an average traveling angle at which light incident on the display element at the angle θ0 travels to the isotropic diffusion layer, T is a distance from an image formation surface to an interface between a light diffusing member and the isotropic diffusion layer, n0 is a refractive index of air, n1 is an average refractive index in a region between the image formation surface and the isotropic diffusion layer, P is a pixel pitch, and P′ is a distance between a position at which a portion of light emitted from an end portion of one of the pixels reaches the isotropic diffusion layer in a direction perpendicular to the isotropic diffusion layer and a position at which another portion of the light emitted from the end portion of the one of the pixels reaches the isotropic diffusion layer at the traveling angle θ1, the following Expressions (1), (2), and (3) are satisfied.
Abstract:
A light control film includes a light shielding layer and a light diffusion portion, and, when an area of a part where the light shielding layer is in contact with one surface of the base material is set to S1, and an area of a part where a low refractive index portion is exposed between light incidence end surfaces is set to S2, the light shielding layer and the light diffusion portion are formed so as to satisfy (S1−S2)/S1×100≥50.
Abstract:
A liquid crystal display (1) includes a liquid crystal panel (4), a backlight (2), and a light-diffusing member (7). There exist azimuths in which a transmittance of the liquid crystal panel (4) and a luminance of the backlight (2) are higher than a transmittance and a luminance in a direction of a normal. The azimuth in which the transmittance of the liquid crystal panel (4) is higher coincides with the azimuth in which the luminance of the backlight (2) is higher.
Abstract:
Provided is a liquid crystal display device in which grayscale inversion when viewing a liquid crystal panel in an oblique direction is suppressed, thereby being excellent in viewing angle characteristics. The liquid crystal display device includes a liquid crystal panel that includes a pair of substrates, a liquid crystal layer disposed between the pair of substrates, and a pair of polarization plates respectively arranged in the liquid crystal layer on a light incident side and a light emission side, an illumination device that is arranged on the light incident side of the liquid crystal panel and emits light toward the liquid crystal panel, and a light diffusion member that is arranged on the light emission side of the liquid crystal panel and causes light emitted from the liquid crystal panel to be diffused in an azimuthal direction viewed from a normal direction of the liquid crystal panel. When the total width of a polar angle when luminance is reduced to ⅓ of the maximum luminance in characteristics of polar angle luminance of the illumination device is referred to as a ⅓-total width, the ⅓-total width of the illumination device is equal to or greater than 60° in the azimuthal direction in which variations in luminance of the illumination device in a polar angle direction are the greatest.
Abstract:
Provided is a display device including a light-diffusing member that includes a substrate, a plurality of light-shielding layers, and a light-diffusing section, and a polarizing plate. The light-diffusing member is configured to diffuse light, which is incident from a polarizing plate side, in an anisotropic manner, the light-diffusing section has a light-emitting end surface that is in contact with the substrate, a light-incident end surface that is opposite to the light-emitting end surface and has an area larger than an area of the light-emitting end surface, and a reflective surface that is in contact with the light-emitting end surface and the light-incident end surface and reflects light incident from the light-incident end surface, a height of the light-diffusing section from the light-incident end surface to the light-emitting end surface is set to be larger than a layer thickness of the light-shielding layers, and an azimuth angle direction in which diffusibility of the light-diffusing member is relatively strong, and a transmission axis of the polarizing plate are approximately parallel with each other.