摘要:
The substrate according to the invention includes at least one surface coated with an organic buffer layer and the organic buffer layer is provided with a coating layer on a surface thereof opposite to its surface attached to the substrate. The provision of the organic buffer layer diminishes the effect of the coating layer on the strength of the substrate, thereby maintaining the strength of the substrate.
摘要:
A touch panel includes a transparent substrate, an electrically conductive icon or artwork layer, a first icon or artwork layer, a sensing layer, a metal layout and an electrode pattern. The electrically conductive icon or artwork layer is disposed between the transparent substrate and the first icon or artwork layer. The first icon or artwork layer is so coated as to extend over the periphery of the electrically conductive icon or artwork layer. The electrically conductive icon or artwork layer is electrically connected to a grounding trace to impart the touch panel an improved anti-electromagnetic interference capability, thereby ameliorating the problem of false actuation that frequently occurs between the icon or artwork layer and the sensing layer in the conventional devices.
摘要:
A two-stage manufacturing process for preparation of an ITO layer includes having first a transparent substrate, e.g., a glass or plastic substrate going through treatment without preheating; the substrate is then sputtering processed in a sputtering chamber under process conditions without heating up to form a amorphous state ITO film on the surface of the transparent substrate; followed with a thermal treatment at a preset temperature to turn the ITO layer into a crystalline state without compromising strength of the glass or the plastic substrate while delivering a durable ITO layer and a structure of ITO layer provided with a specific sheet resistance and/or thickness. The ITO layer produced using the present invention particularly fits to be applied in a touch screen structure.
摘要:
A method of fabricating transparent conductive film including the following steps is provided. First, a reactive chamber having at least a target and at least a heating device is provided. Subsequentially, a plasma is generated in the reactive chamber, wherein the plasma is located above the target. Next, the plasma is heated by the heating device from a standby temperature to a working temperature. Simultaneously, a hard plastic substrate is passed above the plasma at a specific speed, wherein the particles of the target are bombarded by the plasma so as to form transparent conductive film on the hard plastic substrate.
摘要:
A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
摘要:
A method of strengthening glass plate is provided. A plasma treating process is performed on a glass plate so that a surface pore variation of the glass plate after the plasma treating process is reduced relative to the surface pore variation of the glass plate before the plasma treating process, wherein the surface pore variation is a variation degree of surface pores in different unit areas of the glass plate. In the mean time, a melted network crosslinking structure is formed on the surface of the glass plate. Based on the above-mentioned mechanisms, the glass plate is strengthened. The plasma treating process is conducive to strengthen the glass plate whether the plasma treating process is performed before or after the conventional chemical strengthening process.
摘要:
A ITO layer structure, which is composed of the ITO as the outermost layer and the first anti-reflected layer on the specific side of the transparent substrate, furthermore, the second anti-reflected layer is formed on the opposite side of substrate, can improve the total transmittance.
摘要:
A ITO layer structure, which is composed of the ITO as the outermost layer and the first anti-reflected layer on the specific side of the transparent substrate, furthermore, the second anti-reflected layer is formed on the opposite side of substrate, can improve the total transmittance.
摘要:
A method for treating a surface of a glass substrate according to the invention has the steps of placing the glass substrate into a vacuum treatment chamber, introducing a gas into the vacuum treatment chamber, providing electric power to generate an ion source and using the ion source to treat the surface of the glass substrate. By this way, the invention can achieve an effect of surface cleaning and further render the conductive film to be coated on the glass substrate in the subsequent stage to have a reduced surface resistance, thereby improving the conductivity of the glass substrate. The film coated on the glass substrate in the subsequent stage will have higher crystalline level as well.
摘要:
A method for producing an ITO transparent substrate with a high resistance at a low-temperature sputtering process is provided for mass production. The method is characterized by: a film of ITO mixed with metallic-oxide target and coated with multiple layers provides a transparent capacity. The film can be produced via a production line and further heated and annealed for stabilizing the high resistance thereof.