Abstract:
Provided is a method for producing glycine, in which on synthesizing glycine from glycinonitrile, glycine can be obtained in a higher yield than that in the conventional method. The present invention relates to a method for producing glycine, including allowing glycinonitrile and water to react with each other in the presence of a cerium compound, optionally adding ammonia thereto, to obtain glycine.
Abstract:
An ascorbic acid derivative composition of a first aspect according to the present invention consists of a salt of a compound (1) represented by a general formula (1) shown below; and a salt of a compound (2) represented by a general formula (2) shown below, wherein a ratio of the salt of the compound (2) with respect to a total amount of the salt of the compound (1) and the salt of the compound (2) is from 0.1 to 10% by mass, wherein R1 represents a linear or branched alkyl group of 6 to 20 carbon atoms, R2 represents a linear or branched alkyl group of 6 to 20 carbon atoms, and R1 and R2 are the same or are different from each other.
Abstract:
The present invention relates to a method for producing a specified α-amino acid, the method including allowing a specified α-amino acid amide and water to react with each other in the presence of a zirconium compound which contains zirconium and at least one metal element selected from the group consisting of lithium, nickel, copper, zinc, cesium, barium, hafnium, tantalum, cerium, and dysprosium.
Abstract:
An ascorbic acid derivative composition of a first aspect according to the present invention consists of a salt of a compound (1) represented by a general formula (1) shown below; and a salt of a compound (2) represented by a general formula (2) shown below, wherein a ratio of the salt of the compound (2) with respect to a total amount of the salt of the compound (1) and the salt of the compound (2) is from 0.1 to 10% by mass, wherein R1 represents a linear or branched alkyl group of 6 to 20 carbon atoms, R2 represents a linear or branched alkyl group of 6 to 20 carbon atoms, and R1 and R2 are the same or are different from each other.
Abstract:
Provided is a gas supply apparatus for supplying a gas compound obtained by vaporizing a liquid compound to a target location, the gas supply apparatus comprising: a storage vessel capable of storing the liquid compound; a gas compound supply pipeline, one end of which is connected to the storage vessel, and another end of which is capable of being disposed at the target location; and a temperature control device configured to adjust a temperature of the gas compound or the liquid compound within the storage vessel to be equal to or lower than a surrounding temperature of the gas compound supply pipeline.