Abstract:
An oxygen reduction catalyst includes a composite particle, the composite particle including a carbon structure and particles each including a Group 4 metal element M1, the composite particle containing a Group 4 metal element M1, carbon, nitrogen and oxygen, the particles each including a Group 4 metal element M1 being dispersed in the carbon structure, and the composite particle having a percentage of mass loss (a) and a percentage of mass loss (b), which are represented by specific formulae, of not more than 15% and 25 to 70%, respectively.
Abstract:
An oxygen reduction catalyst containing as constituent elements cobalt, sulfur, and a transition metal element M being at least one element selected from chromium and molybdenum, the oxygen reduction catalyst being ascertained to have a crystal structure of a cobalt disulfide cubic crystal in powder X-ray diffraction measurement, and having a molar ratio of the transition metal element M to cobalt (M/cobalt) of 5/95 to 15/85. Also disclosed is an electrode having a catalyst layer containing the oxygen reduction catalyst, a membrane electrode assembly including a polymer electrolyte membrane wherein the electrode serves as a cathode and/or an anode, and a fuel cell including the membrane electrode assembly.
Abstract:
The present invention relates to an oxygen reduction catalyst, an electrode, a membrane electrode assembly, and a fuel cell, and the oxygen reduction catalyst is an oxygen reduction catalyst containing substituted CoS2, in which the substituted CoS2 has a cubic crystal structure, the oxygen reduction catalyst contains the substituted CoS2 within 0.83 nm from the surface thereof, and the substituted CoS2 has at least one substitutional atom selected from the group consisting of Cr, Mo, Mn, Tc, Re, Rh, Cu, and Ag in some of Co atom sites.
Abstract:
An oxygen reduction catalyst, an ink including the catalyst, a catalyst layer including the catalyst, an electrode having the catalyst layer, a membrane electrode assembly having the catalyst layer, and a fuel cell having the membrane electrode assembly. The oxygen reduction catalyst includes titanium dioxide particles, a carbon material and a catalyst component, wherein a surface of the titanium dioxide particles is covered with zinc oxide, and the titanium dioxide particles and the carbon material each support the catalyst component.
Abstract:
There is provided a corrosion-resistant member in which a corrosion-resistant coating film is less likely to peel off from a base material even when the corrosion-resistant member is subjected to a thermal history. The corrosion-resistant member includes: a base material (10) containing aluminum or an aluminum alloy; and a corrosion-resistant coating film (20) formed on the surface of the base material (10), in which the corrosion-resistant coating film (20) contains aluminum fluoride hydroxide AlF3−x(OH)x in which a space group belongs to R-3c, and x in the chemical formula is 0.05 or more and 1.00 or less.
Abstract:
Provided are an oxygen reduction catalyst having a high electrode potential under a fuel cell operating environment, an electrode containing the oxygen reduction catalyst, a membrane electrode assembly in which a cathode is the electrode, and a fuel cell including the membrane electrode assembly. The oxygen reduction catalyst used here contains cobalt, sulfur, and oxygen as elements, has a CoS hexagonal structure in powder X-ray diffractometry, and having an S—Co/S—O peak area ratio of 2.1 to 8.9 in an S2p spectrum in X-ray photoelectron spectroscopic analysis.
Abstract:
Provided are an oxygen reduction catalyst having a high electrode potential under a fuel cell operating environment, an electrode containing the oxygen reduction catalyst, a membrane electrode assembly in which a cathode is the electrode, and a fuel cell including the membrane electrode assembly. The oxygen reduction catalyst used here contains cobalt, sulfur, and oxygen as elements, has a CoS2 cubic structure in powder X-ray diffractometry, and having an S—Co/S—O peak area ratio of 6 to 15 in an S2p spectrum in X-ray photoelectron spectroscopic analysis.