Abstract:
Disclosed is a method for controlling a conveyor for conveying hollow bodies through a hollow-body heating station including:—a heating tunnel defining a heating path,—a conveyor including at least one travel track and shuttles capable of moving along the track while picking up at least one hollow body, the movement of each shuttle being controlled individually,—a travel-track loading portion on which two consecutive shuttles move at a first predetermined input separation, and a travel-track unloading portion. Two consecutive shuttles moving on this unloading portion are spaced apart by a predetermined output separation that is different from the first input separation.
Abstract:
An installation (26) for thermally conditioning thermoplastic preforms (14) that are intended to be formed, the installation (26) including:—a thermal-conditioning zone (40) divided vertically into a heating first part (42) which is intended to house a body (16) of the preform (14) and a cooling second part (44) which is intended to house a neck (20) of the preform (14);—a device (62) for cooling a portion of the preform (14) by producing a stream of gas passing through the thermal-conditioning zone (40); characterized in that the cooling device (62) produces a blade (63) of gas blown with laminar flow through an axial outlet slit (72).
Abstract:
Disclosed is a device for transporting plastic-container preforms, the device including an endless circulating element having an outer surface and being capable of moving the preforms along a path by rubbing against the preforms, the device including a stationary mounting defining a planar bearing surface for the preforms, the circulating element having a series of brushes which extend projecting from the outer surface, capable of engaging with the preforms in order to move same by rubbing.
Abstract:
The invention relates to a device for gripping a container preform having a base, a spindle which is mounted on the base, and an ejector at least partially surrounding the spindle. The spinner includes a spindle mounted such that it pivots in a sliding manner in relation to the base and a spinner tip removably fixed to the spindle. The ejector partially surrounds the spinner and is able to occupy a working position in which it is secured to the base. The spinner tip and the ejector are respectively provided with an imprint and a complementary counter-imprint. The ejector can be removed from the base and can occupy a tooling position in which the counterpart thereof cooperates with the cavity of the spinner tip so that they rotate together.
Abstract:
A device (30) for serial treatment of hollow bodies including: a transport member (32); a treatment rod (38) mounted slidably relative to the transport member (32); controlled elements for moving each treatment rod (38) between a retracted position and an extended position in which the treatment rod (38) is intended for being inserted axially into the transported hollow body; wherein the controlled elements consist of an electric actuator (42) controlled by an electronic control unit (44) for stopping the treatment rod (38) in the extended position thereof. A method for serial treatment of preforms using the treatment device is also described.
Abstract:
A method for producing a marked container (12), includes the following steps: a first step (E1) of heating, beyond a glass transition temperature, at least one shape-changing portion of the thermoplastic material wall (17) of a preform (14); and a second step (E2) of forming the container by injecting a pressurized fluid into the body (16) of the preform (14) such as to change the shape of the heated portion of the wall (17) by stretching it; and a step (E0) for marking the preform (14), during which a mark (39) is provided on the shape-changing portion of the wall (17) such that the mark (39) is stretched at the same time as the wall (17), during step (E2) after forming.