Abstract:
Provided is a wind turbine, including a rotor with a rotor shaft connected to a generator and a bearing housing, whereby the bearing housing includes at least a first bearing group and a second bearing group each comprising at least a primary bearing setup and a secondary bearing setup in which bearing is receivable, whereby the rotor shaft is rotatably arranged by the primary bearing setups or the secondary bearing setups.
Abstract:
An improved transformer arrangement of a wind turbine is provided. A wind turbine transformer arrangement comprises a transformer that is arranged in the wind turbine. The transformer comprises a housing. The transformer housing is filled with an oil. The transformer arrangement comprises at least one decompression chamber and the interior of the transformer housing is connected to the interior of the decompression chamber by a pressure release tube in a way that an increase in the pressure in the transformer housing due to a malfunction of the transformer is transferred through the pressure release tube into the decompression chamber.
Abstract:
A transformer chamber for a wind turbine is described. The transformer chamber includes a liquid-tight tank for receiving a liquid-filled, in particular oil-filled, transformer, a wind turbine structure component includes a component bedframe adapted for receiving such a transformer chamber and a wind turbine includes such a transformer chamber and such a wind turbine structure component. Furthermore, a method for assembling a wind turbine is described.
Abstract:
A transformer chamber for a wind turbine is described. The transformer chamber includes a liquid-tight tank for receiving a liquid-filled, in particular oil-filled, transformer, a wind turbine structure component includes a component bedframe adapted for receiving such a transformer chamber and a wind turbine includes such a transformer chamber and such a wind turbine structure component. Furthermore, a method for assembling a wind turbine is described.
Abstract:
A wind turbine is provided, including a hub, a blade shaft which is connected to the hub, a rotor blade which is connected to the blade shaft, a fixed bearing arrangement which is arranged at a blade end) of the blade shaft, and a floating bearing arrangement which is arranged at a hub end of the blade shaft, wherein the bearing arrangements enable a rotational movement of the rotor blade relative to the blade shaft. One advantage of the wind turbine including the bearing arrangements is that a better distribution of the loads is achieved. Further, the serviceability is better compared to bearings with rolling elements.
Abstract:
An apparatus for dampening of acoustic noise generated by air-cooling of at least one turbine component provided with the nacelle of a wind turbine is provided. Apparatus for dampening of acoustic noise generated by air-cooling of at least one wind turbine component provided with the nacelle of a wind turbine, comprising at least one acoustic dampener, with the acoustic dampener including at least one acoustic dampening channel structure having at least one acoustic dampening channel connected with at least one inlet opening of the acoustic dampening channel structure and at least one outlet opening of the acoustic dampening channel structure.
Abstract:
An airflow control arrangement for a direct-drive wind-turbine with a generator comprising a rotor and a stator, which airflow control arrangement comprises an outflow fan arranged to draw an exit airflow through an exit duct, which exit duct extends from an interior cavity of the stator to the exterior of the wind turbine. The invention further describes a direct-drive wind turbine comprising such an airflow control arrangement. The invention further describes a method of controlling an airflow in a direct-drive wind-turbine with a generator comprising a rotor and a stator is provided.
Abstract:
A turning device to rotate the rotatable part of a wind turbine that comprises a stationary part and a rotatable part is described. The rotatable part is rotatable with respect to the stationary part of the wind turbine, and the stationary part is located within a nacelle, wherein the nacelle is at least partially enclosed by a housing.The turning device comprises a first lever and a second lever that is detachably attached to the rotatable part of the wind turbine.The first lever and the second lever reach from inside the housing of the nacelle through an opening to the outside of the nacelle, so that the drive is located outside of the housing of the nacelle, when the turning device is attached to the wind turbine.