Abstract:
A signal gating circuit includes a logic circuit that receives a stop signal and an input signal and provides an intermediate signal in response, and a pulse stretcher. The pulse stretcher provides an output signal with no pulse when a width of a pulse of the intermediate signal is less than a first amount, with a pulse having a first pulse width that begins after a start of the pulse of the intermediate signal and ends at a predetermined delay thereafter when a pulse width of the intermediate signal is greater than the first amount but less than a second amount, and with a pulse having a second pulse width that begins after the start of the pulse of the intermediate signal and ends after an end of the pulse of the intermediate signal when a pulse width of the intermediate signal is greater than the second amount.
Abstract:
A technique includes switching a supply rail from receiving a first voltage to receiving a second voltage; and regulating a slew rate associated with the switching.
Abstract:
An apparatus includes a detector to detect an idle state of a communication link that communicates bursts or packets of information. The apparatus also includes an oscillator having low-power and normal modes of operation. The oscillator makes a transition to the low-power mode during the idle state of the communication link. The oscillator leaves the low-power mode of operation and enters the normal mode of operation when the communication link is in a non-idle state.
Abstract:
An apparatus includes a multiplexed liquid crystal display (LCD) controller. The LCD controller operates in at least first and second phases of operation. The LCD controller drives a first plurality of signal lines to a first set of voltages during the first phase of operation and to a second set of voltages during the second phase of operation. The LCD controller selectively couples to a node at least some of the plurality of signal lines between the first and second phases of operation depending on data provided to the LCD controller.
Abstract:
A motor control apparatus to control a motor external to the motor control apparatus includes a microcontroller unit (MCU). The MCU includes mixed signal motor control circuitry adapted to perform back electromotive force (EMF) motor control in a first mode of operation. The mixed signal motor control circuitry is further adapted to perform field oriented control (FOC) in a second mode of operation.
Abstract:
An apparatus includes a temperature measurement circuit. The temperature measurement circuit includes a bandgap circuit including an amplifier having an offset voltage that is compensated by using a set of trimming bits. The bandgap circuit provides first and second voltages related to a temperature to be measured. The temperature measurement circuit further includes a measuring circuit coupled to receive the first and second voltages. The measuring circuit further includes a comparator coupled to receive the first and second voltages, wherein the measuring circuit derives a temperature measurement from the first and second voltages.
Abstract:
An apparatus includes a circuit that has a normal mode of operation and a low-power mode of operation. The circuit consumes more power in the normal mode of operation than in the low-power mode of operation. The apparatus further includes a power-supply circuit. The power-supply circuit provides a normal supply voltage to the circuit in the normal mode of operation. The power-supply circuit includes a non-linear circuit to provide a compressed supply voltage to the circuit in the low-power mode of operation, wherein the normal supply voltage is greater than the compressed supply voltage.
Abstract:
An apparatus includes a communication circuit coupled to a communication link, a wakeup detector, and a power control circuit. The communication circuit has a first state and a second state. The power consumption of the communication circuit is lower in the second state than in the first state. The wakeup detector is coupled to the communication link. The wakeup detector generates a wakeup signal to cause the communication circuit to make a transition from the second state to the first state in response to an occurrence of an event on the communication link. The power control circuit selectively supplies power to the communication circuit in response to the wakeup signal.
Abstract:
An apparatus includes a circuit that has a normal mode of operation and a low-power mode of operation. The circuit consumes more power in the normal mode of operation than in the low-power mode of operation. The apparatus further includes a power-supply circuit. The power-supply circuit provides a normal supply voltage to the circuit in the normal mode of operation. The power-supply circuit includes a non-linear circuit to provide a compressed supply voltage to the circuit in the low-power mode of operation, wherein the normal supply voltage is greater than the compressed supply voltage.
Abstract:
A method includes providing supply voltages to a supply voltage switching circuit that controls routing of the supply voltages to power consuming circuitry associated with the supply voltage switching circuit. The method includes comparing the supply voltages, including using at least one relatively lower precision comparator to compare the supply voltages for a relatively large difference between the supply voltages; and using at least one relatively higher precision comparator to compare the supply voltages for a relatively smaller difference between the supply voltages. The method further includes, based on a result of comparing the supply voltages, selectively coupling the supply voltages to at least one of an isolation well and a power supply rail of the supply voltage switching circuit.