Abstract:
An antenna for inductively transmitting information and/or energy, in particular a hearing aid antenna, has a foil-like antenna base body that has a central coil core section that holds a first coil, and outer antenna sections arranged opposite one another on both sides of the central coil core section. The outer antenna sections respectively have an edge-side coil core section that adjoins the central coil core section and holds a second coil. The outer antenna sections are at an angle relative to the central coil core section. There is also described a device, in particular a hearing device, which is preferably a hearing aid, with such an antenna.
Abstract:
A magnetic-inductive antenna for a hearing instrument includes two antenna surfaces which are formed from magnetic, flexible foil, and a base which is wound with an antenna winding. The antenna surfaces are formed from magnetic foil blanks which are separated from one another. The base has, at each of its end sides, a respective opening into which a respective one of the foil blanks is inserted. A hearing instrument and a method for producing a magnetic-inductive antenna for a hearing instrument are also provided.
Abstract:
A hearing aid, in particular a behind-the-ear hearing assistance aid, contains a transmitting and/or receiving unit having an antenna element for wireless signal transmission and for wireless energy transfer to an energy store. The antenna element is formed as a foil structure, which at least sectionally encloses the energy store.
Abstract:
In a binaural hearing aid system audio signals are transmitted between an antenna facility of a left ITE hearing aid and an antenna facility of a right ITE hearing aid. Binaural beam forming is based on a natural directivity of the pinna and/or based on a head shadowing effect. Each antenna facility has an antenna arrangement with a coil core made of magnetically permeable material, and extending along a longitudinal axis, a further electric hearing aid component, which emits electromagnetic interference radiation, and an at least partially planar shield made of magnetically permeable material. The shield is arranged between the antenna arrangement and the further hearing aid component transversely to the longitudinal axis of the coil core and the shield is arranged at a distance of 50 to 150 micrometers from the coil core, preferably 75 to 100 micrometers.
Abstract:
A loudspeaker module for a hearing device has a loudspeaker, which has a loudspeaker diaphragm and a drive for the loudspeaker diaphragm, and a housing, in which the loudspeaker is arranged. Furthermore, the loudspeaker module contains an antenna unit, which has an antenna coil having a coil axis, a tubular coil core, which forms a sound channel, and an antenna base plate, in which a sound passage opening that opens into the sound channel is formed. The antenna coil, the coil core and the antenna base plate in this case prescribe an antenna characteristic of the antenna unit. The side wall of the housing on the diaphragm side is in this case formed by the antenna base plate.
Abstract:
A binaural hearing device has first and second hearing aids and a control device. Each hearing aid has a communication unit, an audio receiver and an earphone. The communication units are configured for reciprocal data transmission by inductive coupling. The audio receivers receive and process stereophonic audio data. The control device switches one of the hearing aids to an inactive audio reception state and the other to an active audio reception state, swaps the audio reception states of the hearing aids within an operating period based on a signal strength of the audio signal of one hearing aid at a time, and drives the hearing aid with the active audio reception state to transmit audio data to the hearing aid with the inactive audio reception state via the communication units.
Abstract:
A hearing aid device has an antenna device. The antenna device is configured to receive and/or transmit electromagnetic waves of a predetermined wavelength lambda. The antenna device has an energy coupling device which is configured to supply or to draw electrical energy to or from the antenna device. The antenna device has a first conductor and a second conductor, which are in energy exchange with the energy coupling device, extend away from the energy coupling device in different directions and are arranged a short distance from a third conductor. A first ohmic connection between the first conductor and the third conductor and a second ohmic connection between the second conductor and the third conductor are arranged at a predefined distance from the energy coupling device.