Abstract:
A buffer circuit configured to receive first and second input signals through first and second input transistors coupled to a first power voltage node, output a first output signal through a first output node and a second output signal through a second output node based on the first and second input signals. A load circuit is coupled among the first output node, the second output node, and a second power voltage node and a resistance value is adjusted based on at least one of the first and second output signals.
Abstract:
A semiconductor device includes a chip body; a passivation layer on the chip body; a lower dielectric layer on the passivation layer; a first re-distribution pad on the lower dielectric layer; an upper dielectric layer on the lower dielectric layer, the upper dielectric layer having a groove that exposes an upper surface of the first re-distribution pad; and a second re-distribution pad on the upper dielectric layer. An upper surface of the second re-distribution pad is positioned at a higher level than the upper surface of the first re-distribution pad.
Abstract:
A symbol interference cancellation circuit may be provided. The symbol interference cancellation circuit may include an interference cancellation circuit configured for generating an interference-cancelled signal based on weight application signals, sampling output signals, and a clock signal.
Abstract:
A sense amplifier driving device may include a sense amplifier driving block configured to supply a post overdriving voltage to a pull-up power line coupled to a sense amplifier, the post overdriving voltage supplied to the sense amplifier during a post overdriving operation period in correspondence to a pull-up driving signal. The sense amplifier driving device may include a driving signal generation block configured to compare a reference voltage, set by a voltage trimming signal, with a level of a power supply voltage, and generate the pull-up driving signal for controlling whether to perform a post overdriving operation.
Abstract:
Provided is a method of manufacturing a semiconductor device including a bump interconnect structure. In the method of manufacturing the semiconductor device, a first substrate including a connection pad is formed, and a bump including a solder layer and a metal post protruding from the solder layer are formed on the connection pad. A second substrate including a bump land may be formed. The first substrate may be disposed on the second substrate so that a protruding end of the metal post contacts the bump land, and the solder layer may be reflowed. Accordingly, it possible to interconnect the metal post to the bump land.
Abstract:
A semiconductor package includes a package substrate, a connection pad including a recessed portion disposed on one surface of the package substrate, and an insulating pattern disposed on the one surface of the package substrate to be spaced apart from the connection pad. The connection pad includes an outer sidewall, an inner sidewall in the recessed portion inclining in an inward direction from an upper portion, and a groove pattern formed on the inner sidewall.
Abstract:
A semiconductor system may include a first semiconductor device and a second semiconductor device. The first semiconductor device compares a received signal with an original signal to generate a driving force control signal. The first semiconductor device also drives the original signal using a driving force in accordance with the driving force control signal to output an external transmission signal. The second semiconductor device receives the external transmission signal to generate a positive signal and a negative signal. The second semiconductor device also generates a restoration signal in response to the positive signal and the negative signal. The second semiconductor device additionally outputs the restoration signal as the external transmission signal to the first semiconductor device.
Abstract:
A semiconductor system may include a first semiconductor device and a second semiconductor device. The first semiconductor device compares a received signal with an original signal to generate a driving force control signal. The first semiconductor device also drives the original signal using a driving force in accordance with the driving force control signal to output an external transmission signal. The second semiconductor device receives the external transmission signal to generate a positive signal and a negative signal. The second semiconductor device also generates a restoration signal in response to the positive signal and the negative signal. The second semiconductor device additionally outputs the restoration signal as the external transmission signal to the first semiconductor device.
Abstract:
A buffer circuit configured to receive first and second input signals through first and second input transistors coupled to a first power voltage node, output a first output signal through a first output node and a second output signal through a second output node based on the first and second input signals. A load circuit is coupled among the first output node, the second output node, and a second power voltage node and a resistance value is adjusted based on at least one of the first and second output signals.
Abstract:
A semiconductor system may include a first semiconductor device and a second semiconductor device. The first semiconductor device compares a received signal with an original signal to generate a driving force control signal. The first semiconductor device also drives the original signal using a driving force in accordance with the driving force control signal to output an external transmission signal. The second semiconductor device receives the external transmission signal to generate a positive signal and a negative signal. The second semiconductor device also generates a restoration signal in response to the positive signal and the negative signal. The second semiconductor device additionally outputs the restoration signal as the external transmission signal to the first semiconductor device.