Abstract:
A method for operating a transformerless inverter includes operating first and second half-bridges of the inverter using a unipolar clocking method as a first clocking method, determining a value of a grid-frequency stray current at the DC terminals of the inverter during the unipolar clocking method, and when a limit value is exceeded by the stray current value, operating the first and second half-bridges of the inverter using a stray-current-reducing clocking method as a second clocking method in which the first half-bridge provides an AC voltage at the first AC output, wherein an amplitude of the AC voltage is less than 50% of the amplitude of a voltage amplitude of the grid, and the second half-bridge provides a difference voltage between the grid voltage and the voltage provided by the first half-bridge at the first AC output.
Abstract:
An inverter apparatus includes an input stage receiving DC electric power from a DC power generator for loading a DC voltage link, a DC/AC converter connected to the DC voltage link and feeding AC electric power into a power grid. The apparatus further includes a bidirectional connection for loading a battery out of the DC voltage link and for loading the DC voltage link out of the battery, and a controller operating the DC/AC converter and the bidirectional connection. The controller receives present values of relevant parameters of the battery including working data at least related to a state of charge and safety data indicating a safety state of the battery from a battery monitoring unit. The controller, in operating the bidirectional connection, considers the working data and is commanded by the safety data.
Abstract:
A method for operating a transformerless inverter includes operating first and second half-bridges of the inverter using a unipolar clocking method as a first clocking method, determining a value of a grid-frequency stray current at the DC terminals of the inverter during the unipolar clocking method, and when a limit value is exceeded by the stray current value, operating the first and second half-bridges of the inverter using a stray-current-reducing clocking method as a second clocking method in which the first half-bridge provides an AC voltage at the first AC output, wherein an amplitude of the AC voltage is less than 50% of the amplitude of a voltage amplitude of the grid, and the second half-bridge provides a difference voltage between the grid voltage and the voltage provided by the first half-bridge at the first AC output.
Abstract:
An inverter apparatus includes an input stage receiving DC electric power from a DC power generator for loading a DC voltage link, a DC/AC converter connected to the DC voltage link and feeding AC electric power into a power grid. The apparatus further includes a bidirectional connection for loading a battery out of the DC voltage link and for loading the DC voltage link out of the battery, and a controller operating the DC/AC converter and the bidirectional connection. The controller receives present values of relevant parameters of the battery including working data at least related to a state of charge and safety data indicating a safety state of the battery from a battery monitoring unit. The controller, in operating the bidirectional connection, considers the working data and is commanded by the safety data.
Abstract:
The disclosure relates to a DC/DC converter including at least one clocked switching member and at least one inductor which is arranged between an input connection and an output connection of the DC/DC converter and is for intermediate storage of energy transferred by the DC/DC converter, wherein the inductor has a core with permanent magnetization. The DC/DC converter is configured for bidirectional operation, wherein, in a first energy transfer direction, the at least one switching member is switched in a first operating mode and, in a second energy transfer direction which is opposite to the first, the at least one switching member is switched in a second operating mode which deviates from the first. The disclosure also relates to an operating method for a DC/DC converter.
Abstract:
An inverter with a rated power of at least 3 kVA includes a first assembly which includes a first printed circuit board and a DC/AC converter stage, and a second assembly which includes a second printed circuit board and an EMC filter for the DC/AC converter stage. The first printed circuit board is mounted on a heat sink and lies substantially flat on the heat sink, and the DC/AC converter stage has converter components which comprise power semiconductors, chokes and link circuit capacitors. The chokes and the link circuit capacitors are arranged together on one side of the first printed circuit board, and the heat sink is arranged on the opposite side of the first printed circuit board, and the chokes and/or the power semiconductors are thermally connected to the heat sink via the first printed circuit board and a thermally conductive material arranged between the first printed circuit board and the heat sink. The second printed circuit board is arranged on the side of the first printed circuit board opposite the heat sink, and a metal sheet is arranged between the first assembly and the second assembly, and the second printed circuit board is mounted on the metal sheet.
Abstract:
An inductor apparatus includes an inductor winding, a core defining a magnetic circuit for a magnetic flux generated by a current flowing through the inductor winding, at least one permanent magnet magnetically biasing the core by its permanent magnetization, and a magnetization device operable for adjusting a desired magnetization of the permanent magnet. The at least one permanent magnet is arranged within the magnetic circuit of the magnetic flux generated by the current flowing through the inductor winding. The magnetization device includes a magnetization winding and a circuitry configured to subject the magnetization winding to magnetization current pulses, thereby generating at a location of the permanent magnet a magnetic field which is able to change the permanent magnetization of the permanent magnet.
Abstract:
The disclosure relates to a DC/DC converter including at least one clocked switching member and at least one inductor which is arranged between an input connection and an output connection of the DC/DC converter and is for intermediate storage of energy transferred by the DC/DC converter, wherein the inductor has a core with permanent magnetization. The DC/DC converter is configured for bidirectional operation, wherein, in a first energy transfer direction, the at least one switching member is switched in a first operating mode and, in a second energy transfer direction which is opposite to the first, the at least one switching member is switched in a second operating mode which deviates from the first. The disclosure also relates to an operating method for a DC/DC converter.
Abstract:
An inductor apparatus includes an inductor winding, a core defining a magnetic circuit for a magnetic flux generated by a current flowing through the inductor winding, at least one permanent magnet magnetically biasing the core by its permanent magnetization, and a magnetization device operable for adjusting a desired magnetization of the permanent magnet. The at least one permanent magnet is arranged within the magnetic circuit of the magnetic flux generated by the current flowing through the inductor winding. The magnetization device includes a magnetization winding and a circuitry configured to subject the magnetization winding to magnetization current pulses, thereby generating at a location of the permanent magnet a magnetic field which is able to change the permanent magnetization of the permanent magnet.