Abstract:
The present invention pertains a fluoropolymer [polymer (F)] comprising: —recurring units derived from at least one ethylenically unsaturated fluorinated monomer [monomer (FM)]; —from 5% to 60% by moles [with respect to the total moles of recurring units of polymer (F)] of recurring units derived at least one ethylenically unsaturated fluorinated monomer containing at least one —SO2F functional group [monomer (IO)]; and —from 0.01% to 10% by moles [with respect to the total moles of recurring units of polymer (F)] of recurring units derived from at least one monomer comprising an azide group [monomer (Az)], to a process for its manufacture, to a cross-linkable composition comprising the same, to a process for cross-linking the same and to articles comprising the cross-linked polymer.
Abstract:
The invention pertains to a method of making fluoropolymer dispersions using certain polymeric derivatives including a plurality of ionisable groups selected from the group consisting of —SO3Xa, —PO3Xa and —COOXa, whereas Xa is H, an ammonium group or a monovalent metal, and to fluoropolymer dispersions therefrom.
Abstract:
The present invention relates to certain dispersible ionomer powders made of particles consisting in quasi-spherical hollow agglomerates of elementary particles, to a method for their manufacture involving spray-drying of a latex of said ionomer, and to methods of using the same, notably for coating applications.
Abstract:
The present invention provides a multilayer assembly comprising a metallic layer, that is coated at least on one side with a polymeric composition, a method for the preparation of said assembly and an electrochemical cell comprising said multilayer assembly.
Abstract:
The invention relates to an anti-sticking treatment for particles of fluoropolymers having low crystallinity that comprises deposition at least a partial coating of elementary particles of high crystallinity fluoropolymer on a core of the low crystallinity fluoropolymer particles.
Abstract:
The present invention relates to a solid electrolyte film comprising sulfide-based solid electrolyte particles dispersed into an amorphous fluorinated binder, said solid electrolyte film being characterized by improved ionic conductivity, improved resistance to oxidation and good mechanical properties. The invention further relates to a process for the manufacture of said solid electrolyte film and to its use in solid state batteries.
Abstract:
The invention pertains to a method of making fluoropolymer dispersions using certain reactive oligomeric dispersing agents, of given molecular weight, comprising I and/or Br, and a plurality of ionisable groups selected from the group consisting of —SO3Xa, —PO3Xa and —COOXa, whereas Xa is H, an ammonium group or a monovalent metal, and to fluoropolymer dispersions therefrom.
Abstract:
The present invention relates to a process for the one-pot hydrogenation and dehydration or isomerization of an organic compound, and to a catalyst composition for this process comprising transition metal particles having particle size below 50 nm supported on a material comprising at least one fluorinated polymer (P), wherein polymer (P) bears —SO2X functional groups, X being selected from X′ and OM, X′ being selected from the groups consisting of F, Cl, Br and I; and M being selected from the group consisting of H, and alkaline metal and NH4.
Abstract:
The present invention relates to a liquid composition comprising a polymer bearing —SO3H groups and a perfluoroelastomer, a method for manufacturing said liquid composition and an article manufactured by using said composition. Preferably, said article is a proton exchange membrane, which shows at the same time good mechanical resistance and electrochemical properties and is useful for example as separator in fuel cells.
Abstract:
The invention pertains to a process for manufacturing certain (per)fluoroionomer liquid compositions, comprising, inter alia, at least one of fluorination and treatment with a polar solvent, to the liquid compositions therefrom having an improved solids content/surface tension/liquid viscosity compromise, to the use of the same for manufacturing composite membranes and to composite membranes obtainable therefrom.