Abstract:
Method of operating a power supply and communication entity intended to form part of a system with at least one home-automation actuator comprising an electric motor for driving a movable element in a building, the power supply and communication entity comprising two electrical terminals for linking to the actuator, making it possible to power the actuator and allowing communication between the actuator and the power supply and communication entity, the method comprising two mutually exclusive modes of operation, a command execution mode and a communication mode, to each mode of operation there corresponding a specific power supply signal, the method comprising the steps: —choice of a mode of operation; —generation between the terminals of a power supply signal specific to the mode of operation chosen.
Abstract:
Method of operating a power supply and communication entity intended to form part of a system with at least one home-automation actuator comprising an electric motor for driving a movable element in a building, the power supply and communication entity comprising two electrical terminals for linking to the actuator, making it possible to power the actuator and allowing communication between the actuator and the power supply and communication entity, the method comprising two mutually exclusive modes of operation, a command execution mode and a communication mode, to each mode of operation there corresponding a specific power supply signal, the method comprising the steps: —choice of a mode of operation; —generation between the terminals of a power supply signal specific to the mode of operation chosen.
Abstract:
A method for controlling and/or protecting an actuator of a piece of mobile equipment of a building, the actuator comprising a motor, comprises the steps consisting of: (E1) providing an instantaneous signal representative of the electrical power provided to the motor, (E2) carrying out a sampling of values of the instantaneous signal, (E3) performing a control of each sampled value according to a first protection criterion of the actuator, and issuing a first piece of anomaly information for each sampled value that does not satisfy the first criterion, (E3′) acquiring a set of values from the sampled values, (E4′) performing a control according to a second protection criterion of the actuator applied to all of the acquired sampled values, and issuing a second piece of anomaly information for all of the acquired sampled values that do not satisfy the second protection criterion.