Abstract:
A communication method for a home automation actuator comprising an electric motor driving a moving element in a building and two electric terminals making it possible to power the actuator by a power supply and communication entity (IMS) and allowing communication between the actuator and the power supply and communication entity (IMS), the method comprising the following steps: analysis of a power supply signal supplied by the power supply and communication entity; generation of a first time-sequence of a response signal, representative of a first predetermined calibration information element, called first calibration sequence; sending of a series of time-sequences of the response signal, representative of a series of information elements, each information element of this series, equal to the calibration information element, being represented by a time-sequence which is an image of the first calibration sequence.
Abstract:
Method of operating a power supply and communication entity intended to form part of a system with at least one home-automation actuator comprising an electric motor for driving a movable element in a building, the power supply and communication entity comprising two electrical terminals for linking to the actuator, making it possible to power the actuator and allowing communication between the actuator and the power supply and communication entity, the method comprising two mutually exclusive modes of operation, a command execution mode and a communication mode, to each mode of operation there corresponding a specific power supply signal, the method comprising the steps: —choice of a mode of operation; —generation between the terminals of a power supply signal specific to the mode of operation chosen.
Abstract:
The invention relates to a method for generating control signals for managing the operation of a synchronous motor with one or more permanent magnets (1) comprising a stator (2), the stator comprising a number P of phases (3, 4, 5), a rotor, the rotor comprising said permanent magnet or magnets, a switching module (6) provided with a plurality of switches (K1-K6), a number N of Hall-effect sensors sensitive to a rotating electromagnetic field induced by said permanent magnet or magnets, N being no lower than 2 and strictly lower than P, the method comprising a step of acquiring status information transmitted by the sensors (9, 10) and a step of estimating at least one piece of complementary information on the basis of status information transmitted by the sensors (9, 10), the complementary information characterizing the status variation of at least one virtual sensor. The invention also relates to a control device (10) comprising a module for estimating a piece of complementary information (11) and a module for generating control signals (12) configured to implement the method. The invention further relates to an actuator (9) comprising a synchronous motor with permanent magnets (1) and a control device (10).
Abstract:
A communication method for a home automation actuator comprising an electric motor driving a moving element in a building and two electric terminals making it possible to power the actuator by a power supply and communication entity (IMS) and allowing communication between the actuator and the power supply and communication entity (IMS), the method comprising the following steps: analysis of a power supply signal supplied by the power supply and communication entity; generation of a first time-sequence of a response signal, representative of a first predetermined calibration information element, called first calibration sequence; sending of a series of time-sequences of the response signal, representative of a series of information elements, each information element of this series, equal to the calibration information element, being represented by a time-sequence which is an image of the first calibration sequence.
Abstract:
A communication method for a home automation actuator comprising an electric motor driving a moving element in a building and two electric terminals making it possible to power the actuator by a power supply and communication entity and allowing communication between the actuator and the power supply and communication entity, the method comprising the following steps: analysis of a power supply signal supplied by the power supply and communication entity; generation of a first time-sequence of a response signal, representative of a predetermined calibration binary element, called first calibration sequence; sending of a series of time-sequences of the response signal, representative of a series of binary elements, each binary element of this series, equal to the calibration binary element, being represented by a time-sequence which is an image of the first calibration sequence.
Abstract:
The invention relates to a method for generating control signals for managing the operation of a synchronous motor with one or more permanent magnets (1) comprising a stator (2), the stator comprising a number P of phases (3, 4, 5), a rotor, the rotor comprising said permanent magnet or magnets, a switching module (6) provided with a plurality of switches (K1-K6), a number N of Hall-effect sensors sensitive to a rotating electromagnetic field induced by said permanent magnet or magnets, N being no lower than 2 and strictly lower than P, the method comprising a step of acquiring status information transmitted by the sensors (9, 10) and a step of estimating at least one piece of complementary information on the basis of status information transmitted by the sensors (9, 10), the complementary information characterising the status variation of at least one virtual sensor. The invention also relates to a control device (10) comprising a module for estimating a piece of complementary information (11) and a module for generating control signals (12) configured to implement the method. The invention further relates to an actuator (9) comprising a synchronous motor with permanent magnets (1) and a control device (10).
Abstract:
Method of operating a power supply and communication entity intended to form part of a system with at least one home-automation actuator comprising an electric motor for driving a movable element in a building, the power supply and communication entity comprising two electrical terminals for linking to the actuator, making it possible to power the actuator and allowing communication between the actuator and the power supply and communication entity, the method comprising two mutually exclusive modes of operation, a command execution mode and a communication mode, to each mode of operation there corresponding a specific power supply signal, the method comprising the steps: —choice of a mode of operation; —generation between the terminals of a power supply signal specific to the mode of operation chosen.