Abstract:
There is provided an information processing apparatus including an operation surface configured to receive touch inputs, and a sensor unit configured to detect at least one right-side touch input from a manipulation by a user of the operation surface within a first operational area of the operation surface, and at least one left-side touch input from a manipulation by the user of the operation surface within a second operational area of the operation surface, wherein the first operational area and the second operational area of the operation surface are mapped to a graphical user interface (GUI) area of a display device.
Abstract:
There is provided an information processing apparatus including an operation surface configured to receive touch inputs, and a sensor unit configured to detect at least one right-side touch input from a manipulation by a user of the operation surface within a first operational area of the operation surface, and at least one left-side touch input from a manipulation by the user of the operation surface within a second operational area of the operation surface, wherein the first operational area and the second operational area of the operation surface are mapped to a graphical user interface (GUI) area of a display device.
Abstract:
An apparatus including a memory storing instructions and a control unit executing the instructions is provided. The control unit is configured to send signals to display first and second indicators on a display device. The control unit is further configured to receive first and second user inputs and, in response to the received inputs, to send signals to change a display state of the first indicator according to the first input. The control unit is further configured to send signals to change a display state of the second indicator according to the second input and initiate an operation to be performed based on a combination of the first and second inputs.
Abstract:
There is provided an information processing apparatus that can appropriately present information to the user, and reduce power consumption, the information processing apparatus including: a display control unit configured to display, on a display unit, display information to which an expiration date is set, on a basis of a display instruction; and a processing control unit configured to control executability of predetermined processing on a basis of whether or not the expiration date has passed.
Abstract:
There is provided an information processing device including an acquisition section configured to acquire a curved movement of a body of a user as an operation, a display control section configured to display an object in a virtual three-dimensional space, and a process execution section configured to execute a process on the object based on the acquired operation. The object may be arranged on a first curved plane based on a virtual position of the user set in the virtual three-dimensional space, the first curved plane corresponding to the curved movement.
Abstract:
To provide a technique that enables an easy movement of the pointing position to a position desired by the user, there is provided an information processing system, including: a gaze detection unit configured to detect a gaze of a user, an operation detection unit configured to detect an operation in a space by the user, and a position control unit configured to determine a pointing position based on the operation. The position control unit causes the pointing position to move based on the gaze if a predetermined operation is detected.
Abstract:
An apparatus and method provide logic for processing information. In one implementation, an information processing device includes a housing and a display unit configured to display at least a portion of a first content to a user. A projection unit is configured to project at least a portion of a second content onto a projection surface. A detection unit configured to detect a displacement between the projection surface and a portion of the housing, the housing being configured to support the display unit, the projection unit, and the detection unit. The detection unit is further configured to determine whether the displacement falls within a threshold distance. The projection unit is further configured to project the second portion of the content onto the projection surface, when the displacement falls within the threshold distance.
Abstract:
An apparatus including a memory storing instructions and a control unit executing the instructions is provided. The control unit is configured to send signals to display first and second indicators on a display device. The control unit is further configured to receive first and second user inputs and, in response to the received inputs, to send signals to change a display state of the first indicator according to the first input. The control unit is further configured to send signals to change a display state of the second indicator according to the second input and initiate an operation to be performed based on a combination of the first and second inputs.
Abstract:
An information processing apparatus includes a sensor electrode, a detection unit, and a determination unit. The sensor electrode has a capacitance changed in accordance with an operation to an operation surface. The detection unit is configured to detect, based on a change of the capacitance, a displacement of an operation point of the operation surface. The determination unit is configured to determine a press to the operation surface based on a displacement of a capacitance value of the sensor electrode and the displacement of the operation point.
Abstract:
An input apparatus, a control apparatus, a control system, and a control method that are capable of correcting an output signal when a hand movement is input to the input apparatus and with which a user does not feel a phase delay are provided. An input apparatus includes a velocity calculation section, a filter, a control section, and a memory. The velocity calculation section calculates velocity values of a casing in X′- and Y′-axis directions based on physical amounts output from a sensor unit like acceleration values in the X′- and Y′-axis directions output from an acceleration sensor unit. The filter attenuates, by predetermined scale factors, velocity values of signals of the predetermined frequency range out of the velocity values calculated by the velocity calculation section. Since the filter dynamically attenuates the velocity values of a shake frequency range in accordance with the velocity values, a precise pointing operation with a pointer becomes possible.