Abstract:
A method of manufacturing a liquid crystal display device with which response characteristics are able to be easily improved without using major equipment is provided. The method of manufacturing a liquid crystal display device includes steps of forming a first alignment film including a polymer compound having a crosslinkable functional group as a side chain on one substrate of a pair of substrates; forming a second alignment film on the other substrate of the pair of substrates; arranging the pair of substrates so that the first alignment film and the second alignment film are opposed to each other, and sealing a liquid crystal layer containing a liquid crystal molecule having negative dielectric constant anisotropy between the first alignment film and the second alignment film; and bridging the polymer compound to give pre-tilt to the liquid crystal molecule 41 after sealing the liquid crystal layer.
Abstract:
A method of manufacturing a liquid crystal display device with which response characteristics are able to be easily improved without using major equipment is provided. The method of manufacturing a liquid crystal display device includes steps of forming a first alignment film including a polymer compound having a crosslinkable functional group as a side chain on one substrate of a pair of substrates; forming a second alignment film on the other substrate of the pair of substrates; arranging the pair of substrates so that the first alignment film and the second alignment film are opposed to each other, and sealing a liquid crystal layer containing a liquid crystal molecule having negative dielectric constant anisotropy between the first alignment film and the second alignment film; and bridging the polymer compound to give pre-tilt to the liquid crystal molecule 41 after sealing the liquid crystal layer.
Abstract:
There is provided a liquid crystal display including: a liquid crystal display element which includes a pair of alignment films which are provided on facing surface sides of a pair of substrates, and a liquid crystal layer which is provided between the pair of alignment films and is configured to have a liquid crystal composition containing liquid crystal molecules having negative dielectric anisotropy, in which at least one of the pair of alignment films contains a compound obtained by crosslinking polymer compounds each including a first side chain which interacts with the liquid crystal molecules and a crosslinkable functional group as a second side chain, with each other, the liquid crystal composition configuring the liquid crystal layer contains at least one kind of an alkenyl compound represented by the following general formula (AN-1), and pretilt is applied to the liquid crystal molecules by the crosslinked compound.
Abstract:
A liquid crystal display device includes multiple pixels which are arrayed. Each pixel includes a first substrate, a second substrate, a first electrode formed on an opposing face of the first substrate which faces the second substrate, a second electrode formed on an opposing face of the second substrate which faces the first substrate, a liquid crystal layer which includes liquid crystal molecules, situated between the first electrode and the second electrode, and a planarization layer. The liquid crystal molecules are pretilted. Multiple ridge-and-groove portions are formed at the first electrode. At least the grooves of the first electrode are filled in by the planarization layer.
Abstract:
A liquid crystal display device including an array of pixels each including first and second substrates, first and second electrodes formed on opposing surfaces of the first and second substrates, which surfaces are positioned opposite to the second and first substrates, first and second alignment restricting portions provided in the first and second electrodes, first and second alignment films covering respectively the first and second electrodes, the first and second alignment restricting portions, and the opposing surfaces of the first and second substrates, and a liquid crystal layer formed between the first and second alignment films and containing liquid crystal molecules, wherein, in each pixel, major axes of a group of liquid crystal molecules are positioned substantially in the same imaginary plane in a predetermined overlapped region between the first and second electrodes, and a pre-tilt is given to the liquid crystal molecules by at least the first alignment film.
Abstract:
A liquid-crystal display apparatus includes a plurality of rectangular pixels. Each pixel includes a first electrode and a second electrode. A slit region and a concave and convex portion are formed in the first electrode. It further includes a control circuit. The plurality of pixels are constituted of a first pixel group and a second pixel group. First data lines and for applying a voltage on the first electrode are provided closer to the first substrate than the first electrode. In each pixel that constitutes the first pixel group, a second data line extension extending from a second data line is provided adjacent to a first data line. In each pixel that constitutes the second pixel group, a first data line extension extending from the first data line is provided adjacent to the second data line.
Abstract:
A liquid crystal display device including an array of pixels each including first and second substrates, first and second electrodes formed on opposing surfaces of the first and second substrates, which surfaces are positioned opposite to the second and first substrates, first and second alignment restricting portions provided in the first and second electrodes, first and second alignment films covering respectively the first and second electrodes, the first and second alignment restricting portions, and the opposing surfaces of the first and second substrates, and a liquid crystal layer formed between the first and second alignment films and containing liquid crystal molecules, wherein, in each pixel, major axes of a group of liquid crystal molecules are positioned substantially in the same imaginary plane in a predetermined overlapped region between the first and second electrodes, and a pre-tilt is given to the liquid crystal molecules by at least the first alignment film.
Abstract:
There is provided a liquid crystal display device comprising: a first substrate (20); a second substrate (50); a first electrode (140) formed on a first surface of the first substrate (20), the first surface facing the second substrate (50), the first electrode (140) including a plurality of convex and concave portions (141); a first oriented film (21) formed on the first surface of the first substrate (20); a second electrode (160) formed on a second surface of a second substrate (50), the second surface facing the first substrate (20); and a liquid crystal layer (70) provided between the first substrate (20) and the second substrate (50), wherein at least one of the convex portions (143,144) includes a plurality of stepped portions. There is also provided a method of manufacturing a liquid crystal display device.
Abstract:
A liquid crystal display device includes a plurality of pixels arranged in a matrix, each pixel having: first and second substrates; a first electrode formed on an opposing face of the first substrate opposing the second substrate; a first alignment film covering the first electrode and the opposing face of the first substrate; a second electrode formed on the opposing face of the second substrate opposing the first substrate; a second alignment film covering the second electrode and the opposing face of the second substrate, and a liquid crystal layer which is provided between the first alignment film and the second alignment film and includes liquid crystal molecules, where a pretilt is imparted on the liquid crystal molecules, a plurality of uneven portions is formed on the first electrode, and a width of a portion of the convex portions provided on the first electrode becomes narrower toward the tip portion.
Abstract:
A liquid crystal display device includes a liquid crystal display element including a first alignment film and a second alignment film and a liquid crystal layer that is provided between the first alignment film and the second alignment film, wherein the first alignment film includes a compound in which a polymer compound that includes a cross-linked functional group or a polymerized functional group as a side chain is cross-linked or polymerized, the second alignment film includes the same compound as the compound that configures the first alignment film, and the formation and processing of the second alignment film is different from the formation and processing of the first alignment film and when a pretilt angle of the liquid crystal molecules which is conferred by the first alignment film is θ1 and a pretilt angle of the liquid crystal molecules which is conferred by the second alignment film is θ2, θ1>θ2.