Abstract:
A liquid-crystal display apparatus includes a plurality of rectangular pixels. Each pixel includes a first electrode and a second electrode. A slit region and a concave and convex portion are formed in the first electrode. It further includes a control circuit. The plurality of pixels are constituted of a first pixel group and a second pixel group. First data lines and for applying a voltage on the first electrode are provided closer to the first substrate than the first electrode. In each pixel that constitutes the first pixel group, a second data line extension extending from a second data line is provided adjacent to a first data line. In each pixel that constitutes the second pixel group, a first data line extension extending from the first data line is provided adjacent to the second data line.
Abstract:
A lighting device capable of manipulating a wider range of parameters to reproduce various light sources. A light source unit includes, for example, a liquid crystal panel and a backlight, and each pixel is a light source capable of adjusting innumerable hues and intensities capable of adjusting hue and intensity. A lenticular lens includes an array of a plurality of lenticules, and is arranged such that a plurality of light sources capable of adjusting hue and intensity is associated with each lenticule. In addition, on the outer periphery of the cylindrical portion of each lenticule, a partition is formed to block emission light from the pixel below the adjacent lenticule, thereby preventing repetition.
Abstract:
Provided is a material-fixing substrate that does not have to use copper as a catalyst because the substrate-bonding site includes a cyclic alkyne to form a covalent bond with a surface of the substrate, and therefore that can reduce damage to a cell, for example, in a case where a to-be-fixed material is the cell. The material-fixing substrate has a to-be-fixed material fixed thereon via a material-fixing agent. The material-fixing agent includes: a substrate-bonding site that forms a covalent bond with a surface of the substrate and includes at least a cyclic alkyne; a hydrophilic site that is bonded to the substrate-bonding site; a light-responsive site that is bonded to the hydrophilic site and changes the skeleton thereof by irradiation with light; and an attachment site to which the to-be-fixed material is attached.
Abstract:
The present technology relates to a light-shielding device and a light-shielding method which make an object that is meant to be invisible to human beings enter a state in which the object is hidden so as to be invisible to eyes, or make an object that is meant to be visible enter a state in which the object is visible to eyes in correspondence with biological information. A light-shielding wall, which partitions two spaces and includes a plurality of panels capable of being controlled to a transmitting state in which light is transmitted or a light-shielding state in which light is shielded, is used as a window, an orientation of a face of a user who is sleeping is detected as biological information, and the light-shielding wall is controlled so that the user is capable of visually recognizing light when it reaches an alarm setting time.
Abstract:
A liquid crystal display device includes a plurality of arranged pixels. Each of the pixels includes: a first substrate and a second substrate; a first electrode provided on a counter face of the first substrate, the counter face facing the second substrate; a second electrode provided on a counter face of the second substrate, the counter face facing the first substrate; and a liquid crystal layer that contains liquid crystal molecules, and is sandwiched between the first substrate and the second substrate. The liquid crystal molecules are given a pre-tilt. The first electrode includes a base layer 150 that contains a plurality of recesses and protrusions, and transparent conductive material layers 135 and 145. The first transparent conductive material layer 135 connected to a first power supply portion is formed on protrusion top faces 151 of the base layer 150. The second transparent conductive material layer 145 connected to a second power supply portion is formed on recess bottom faces 152 of the base layer 150. The first transparent conductive material layer 135 and the second transparent conductive material layer 145 are separated from each other.
Abstract:
An unevenness inspection apparatus including: an image pickup section obtaining a pickup image of a test object; an image generating section generating each of a color unevenness inspection image and a luminance unevenness inspection image based on the pickup image; a calculating section calculating an evaluation parameter using both of the color unevenness inspection image and the luminance unevenness inspection image; and an inspecting section performing unevenness inspection using the calculated evaluation parameter. The calculating section calculates the evaluation parameter in consideration of unevenness visibility for both color and luminance.