Abstract:
An image display apparatus (100) according to the present invention includes a display unit and a projection unit. The display unit includes a curved first screen (43) and a curved second screen (44), the first screen extending along a predetermined axis (1), the curved screen having transparency and being disposed on a front side of the first screen (43) with a gap interposed therebetween. The projection unit includes an emitter (11) that emits light for displaying a first image from a region on the predetermined axis (1) and a second image superimposed on the first image, projects the first image onto the first screen (43), and projects the second image onto the second screen (44).
Abstract:
Provided are an image display apparatus and an image display element that are capable of achieving excellent visual effects. The image display apparatus of the present invention includes a first transparent member, a second transparent member, and an emission section. The first transparent member includes a diffusion surface for diffusing light incident on respective points. The second transparent includes a control surface and is integrated with the first transparent member, the control surface being disposed in a manner that the control surface faces the diffusion surface, controlling propagation directions of light diffused at the respective points on the diffusion surface, and forming a virtual image of the diffusion surface. The emission section emits image light to the diffusion surface.
Abstract:
An image processing method includes: obtaining, based on a plurality of pieces of first luminance information that correspond to fourth sub-pixels contained in a pixel region to which a focused pixel belongs and based on a relative positional relationship between a first sub-pixel and the fourth sub-pixel in a display pixel, second luminance information that corresponds to the fourth sub-pixel of the focused pixel, in which the focused pixel is a display pixel in a display section that includes a plurality of display pixels each having the first sub-pixel, a second sub-pixel, and a third sub-pixel that are configured to emit light of basic colors, and the fourth sub-pixel that is configured to emit light of a color other than the basic colors; and replacing the first luminance information that corresponds to the fourth sub-pixel of the focused pixel with the second luminance information.
Abstract:
An image processing unit includes: a gain calculating section obtaining, based on first luminance information for each pixel, a first gain, in which the first gain is configured to increase with an increase in pixel luminance value in a range where the pixel luminance value is equal to or larger than a predetermined luminance value, and in which the pixel luminance value is derived from the first luminance information; and a determination section determining, based on the first luminance information and the first gain, second luminance information for each of the pixels.
Abstract:
An image processing unit includes: a gain calculating section obtaining, based on first luminance information for each pixel, a first gain, in which the first gain is configured to increase with an increase in pixel luminance value in a range where the pixel luminance value is equal to or larger than a predetermined luminance value, and in which the pixel luminance value is derived from the first luminance information; and a determination section determining, based on the first luminance information and the first gain, second luminance information for each of the pixels.
Abstract:
A display includes: a gain calculation section obtaining, according to an area of a high luminance region in a frame image, a first gain for each pixel in the region; a determination section determining, based on first luminance information for each pixel in the high luminance region and the first gain, second luminance information for each pixel in the high luminance region; and a display section performing display based on the second luminance information.
Abstract:
Provided is an image processing device including a luminance information generating unit that generates fourth luminance information, which becomes the basis of luminance of a fourth pixel, on the basis of variation characteristics with the passage of time regarding light-emission luminance in the fourth pixel of a display unit including a first pixel, a second pixel, and a third pixel which emit three basic color light beams, and the fourth pixel that emits a non-basic color light beam, and first luminance information, second luminance information, and third luminance information which correspond to the first pixel, the second pixel, and the third pixel, respectively.
Abstract:
There is provided an image display apparatus including a pixel array which includes a first pixel of a red luminous color, a second pixel of a green luminous color, a third pixel of a blue luminous color, and a fourth pixel of a luminous color of pigment of hemoglobin.
Abstract:
An image processing method includes: obtaining, based on a plurality of pieces of first luminance information that correspond to fourth sub-pixels contained in a pixel region to which a focused pixel belongs and based on a relative positional relationship between a first sub-pixel and the fourth sub-pixel in a display pixel, second luminance information that corresponds to the fourth sub-pixel of the focused pixel, in which the focused pixel is a display pixel in a display section that includes a plurality of display pixels each having the first sub-pixel, a second sub-pixel, and a third sub-pixel that are configured to emit light of basic colors, and the fourth sub-pixel that is configured to emit light of a color other than the basic colors; and replacing the first luminance information that corresponds to the fourth sub-pixel of the focused pixel with the second luminance information.
Abstract:
An image processing unit includes: a gain calculating section obtaining, based on first luminance information for each pixel, a first gain, in which the first gain is configured to increase with an increase in pixel luminance value in a range where the pixel luminance value is equal to or larger than a predetermined luminance value, and in which the pixel luminance value is derived from the first luminance information; and a determination section determining, based on the first luminance information and the first gain, second luminance information for each of the pixels.