Abstract:
A liquid crystal display capable of realizing a high transmittance while maintaining favorable voltage response characteristics, and a method of manufacturing the same. The liquid crystal display includes: a liquid crystal layer; a first substrate and a second substrate arranged to face each other with the liquid crystal layer in between; a plurality of pixel electrodes provided on a liquid crystal layer side of the first substrate; and an opposite electrode provided on the second substrate to face the plurality of pixel electrodes. One or both of a face on the liquid crystal layer side of the pixel electrode, and a face on the liquid crystal layer side of the opposite electrode includes a concavo-convex structure.
Abstract:
A method of manufacturing a liquid crystal display element capable of easily improving response characteristics without using a large apparatus is provided. After alignment films made of a polymer compound including a crosslinkable functional group as a side chain and a bulky skeleton such as an adamantane skeleton are formed in a TFT substrate and a CF substrate, the alignment films are arranged to face each other, and a liquid crystal layer 40 including liquid crystal molecules is sealed between the alignment films, and then, in a state where the liquid crystal molecules are aligned to allow long-axis directions thereof to be oblique with respect to a substrate surface, the polymer compound in the alignment films is reacted to form a polymer compound including a cross-linked structure, and predetermined pretilts are provided to liquid crystal molecules placed in proximity to the alignment films.
Abstract:
A liquid crystal display capable of realizing a high transmittance while maintaining favorable voltage response characteristics, and a method of manufacturing the same. The liquid crystal display includes: a liquid crystal layer; a first substrate and a second substrate arranged to face each other with the liquid crystal layer in between; a plurality of pixel electrodes provided on a liquid crystal layer side of the first substrate; and an opposite electrode provided on the second substrate to face the plurality of pixel electrodes. One or both of a face on the liquid crystal layer side of the pixel electrode, and a face on the liquid crystal layer side of the opposite electrode includes a concavo-convex structure.
Abstract:
A display unit includes: a liquid crystal display section including first electrodes, a liquid crystal layer, and a second electrode, the first electrodes corresponding to a plurality of unit pixels, the second electrode being disposed to face the first electrodes with the liquid crystal layer in between; a backlight; and a light-ray control section inserted between the liquid crystal display section and the backlight, in which each of the unit pixels includes a plurality of domains or a single domain, the plurality of domains in which liquid crystal alignment differs between the domains, and each of the first electrodes is uniformly formed in each of the plurality of domains or the single domain.
Abstract:
A display unit includes: a display section; and a barrier section including a plurality of first electrodes, one or a plurality of second electrodes, and a liquid crystal layer, the first electrodes and the second electrodes being disposed in different layers or a same layer to face each other, the liquid crystal layer being disposed outside the first electrodes and the second electrodes, in which the electrodes, the second electrodes, and the liquid crystal layer configure a plurality of liquid crystal barriers extending in a first direction and being arranged side by side in a second direction, each of arrangement regions of the first electrodes has a plurality of sub-regions extending in the first direction and being arranged side by side in the second direction, and each of the first electrodes includes a plurality of slits or a plurality of first branch portions belonging to each of the sub-regions.
Abstract:
A display device includes: a display section including a plurality of pixels, the display section displaying a plurality of perspective images; and a plurality of separating sections each tilted in a first oblique direction, and each separating the perspective images displayed on the display section into different directions. Each of the pixels has a shape extending differently between in the first oblique direction and in a second oblique direction, the second oblique direction being tilted in a direction opposite to the first oblique direction with respect to a vertical direction.
Abstract:
A method of manufacturing a liquid crystal display device with which response characteristics are able to be easily improved without using major equipment is provided. The method of manufacturing a liquid crystal display device includes steps of forming a first alignment film including a polymer compound having a crosslinkable functional group as a side chain on one substrate of a pair of substrates; forming a second alignment film on the other substrate of the pair of substrates; arranging the pair of substrates so that the first alignment film and the second alignment film are opposed to each other, and sealing a liquid crystal layer containing a liquid crystal molecule having negative dielectric constant anisotropy between the first alignment film and the second alignment film; and bridging the polymer compound to give pre-tilt to the liquid crystal molecule 41 after sealing the liquid crystal layer.
Abstract:
A method of manufacturing a liquid crystal display device with which response characteristics are able to be easily improved without using major equipment is provided. The method of manufacturing a liquid crystal display device includes steps of forming a first alignment film including a polymer compound having a crosslinkable functional group as a side chain on one substrate of a pair of substrates; forming a second alignment film on the other substrate of the pair of substrates; arranging the pair of substrates so that the first alignment film and the second alignment film are opposed to each other, and sealing a liquid crystal layer containing a liquid crystal molecule having negative dielectric constant anisotropy between the first alignment film and the second alignment film; and bridging the polymer compound to give pre-tilt to the liquid crystal molecule 41 after sealing the liquid crystal layer.
Abstract:
A method of manufacturing a liquid crystal display element capable of easily improving response characteristics without using a large apparatus is provided. After alignment films made of a polymer compound including a crosslinkable functional group as a side chain and a bulky skeleton such as an adamantane skeleton are formed in a TFT substrate and a CF substrate, the alignment films are arranged to face each other, and a liquid crystal layer 40 including liquid crystal molecules is sealed between the alignment films, and then, in a state where the liquid crystal molecules are aligned to allow long-axis directions thereof to be oblique with respect to a substrate surface, the polymer compound in the alignment films is reacted to form a polymer compound including a cross-linked structure, and predetermined pretilts are provided to liquid crystal molecules placed in proximity to the alignment films.