Abstract:
Disclosed herein is system comprising a lighter-than-air (LTA) device and method of making the same. In an embodiment, the system includes the LTA device, which includes a membrane having a flexible substrate and an active material disposed thereon, wherein the active material is configured to controllably change the surface area of at least a portion of the substrate when an electrical stimulus is applied to the active material. In addition, the system may include a payload box; an altitude control vent mechanism; a meteorological data collection package; a communication unit; and an antenna.
Abstract:
Devices, methods and systems for minimizing the probability of a collision between an aircraft and a floating platform are described. The device may include a processor in communication with a memory. The processor is configured to obtain a flight-path vector of an aircraft; determine a probability related to a plurality of flight-paths of a floating platform over a period of time based on operating parameters for the floating platform and weather data; and determine, based on the flight-path vector and the probability related to the plurality of flight-paths of the floating platform, a time and/or a location for launch or recovery of the floating platform that minimizes a probability of a collision between the aircraft and the floating platform while the floating platform is in flight.
Abstract:
Disclosed herein is system comprising a lighter-than-air (LTA) device and method of making the same. In an embodiment, the system includes the LTA device, which includes a membrane having a flexible substrate and an active material disposed thereon, wherein the active material is configured to controllably change the surface area of at least a portion of the substrate when an electrical stimulus is applied to the active material. In addition, the system may include a payload box; an altitude control vent mechanism; a meteorological data collection package; a communication unit; and an antenna.
Abstract:
A method and system for separating and releasing component parts of a payload of a floating platform in response to a high collision probability is disclosed. The method includes, determining if an in-flight aircraft is within at least a safety zone associated with a floating platform, wherein the floating platform comprises releasably-coupled component parts; and activating, responsive to a determination that the in-flight aircraft is within at least the safety zone, a release mechanism, wherein the release mechanism is configured to uncouple the component parts.
Abstract:
Disclosed herein is a lighter-than-air (LTA) device and method of making the same. In an embodiment, the LTA device may include a membrane having a flexible substrate and an active material disposed thereon, wherein the active material is configured to controllably change the surface area of at least a portion of the substrate when an electrical stimulus is applied to the active material.
Abstract:
Devices, methods and systems for minimizing the probability of a collision between an aircraft and a floating platform are described. The device may include a processor in communication with a memory. The processor is configured to obtain a flight-path vector of an aircraft; determine a probability related to a plurality of flight-paths of a floating platform over a period of time based on operating parameters for the floating platform and weather data; and determine, based on the flight-path vector and the probability related to the plurality of flight-paths of the floating platform, a time and/or a location for launch or recovery of the floating platform that minimizes a probability of a collision between the aircraft and the floating platform while the floating platform is in flight.