Abstract:
A network node receives from a mobile terminal being served by a first coverage area a measurement report indicating signal level of a second coverage area detected by the mobile terminal. The network node then makes a determination, by considering PLMNs of the mobile terminal and of the coverage areas, of (i) whether the mobile node is a home mobile node of the first coverage area and (ii) whether the mobile node is a home mobile node of the second coverage area. Based on that determination, the network node then selects a handoff threshold. And based on the handoff threshold and the reported signal level, the network node decides whether to trigger handoff of the mobile terminal from the first coverage area to the second coverage area. The network node then triggers the handoff if the decision is to do so.
Abstract:
As a communication device receives packet data via a first access network, the communication detects that packet data arriving via a second access network is duplicative of the packet data that the communication device is receiving via the first access network. In response to detecting such duplication, the communication device discontinues being served by the first access network and continues with communication via the second access network.
Abstract:
Methods and systems are disclosed that may help a base station to adjust forward-link data rates in a given sector based on transmission-power variations in neighboring sectors. An exemplary method involves a base station that serves a first sector: (a) determining a respective transmission power for each of two or more channels of a second sector, (b) detecting a transmission-power difference between at least two of the channels of the second sector, and (c) in response to detecting the transmission-power difference: (i) determining a data rate control (DRC) adjustment for the first sector based at least in part on the transmission-power difference; and using the determined DRC adjustment to determine a forward-link data rate for at least one access terminal in the first sector.
Abstract:
Methods and systems are disclosed that may help a base station to adjust forward-link data rates in a given sector based on transmission-power variations in neighboring sectors. An exemplary method involves a base station that serves a first sector: (a) determining a respective transmission power for each of two or more channels of a second sector, (b) detecting a transmission-power difference between at least two of the channels of the second sector, and (c) in response to detecting the transmission-power difference: (i) determining a data rate control (DRC) adjustment for the first sector based at least in part on the transmission-power difference; and using the determined DRC adjustment to determine a forward-link data rate for at least one access terminal in the first sector.
Abstract:
A method and corresponding system to help manage resources in a wireless communication system. When a first access network has allocated a resource for use in serving a UE and the UE has then transitioned from being served by the first access network to being served by a second access network, a determination may be made that (i) the UE has then moved into particular coverage of the second access network and (ii) the first access network does not have a coverage area that corresponds with that particular coverage area of the second access network. In response, the first access network may then release the resource that it had allocated for use in serving the UE. In a scenario where the first access is configured to normally release the resource upon expiration of a resource-release timer, the release in response to the determination may advantageously occur before the timer expires.
Abstract:
One embodiment takes the form of a method carried out by a base station. The method includes the base station serving a wireless communication device (WCD) on a given air-interface resource. While serving the WCD, the base station may receive a data packet from the WCD. In response, the base station may update the data packet to include an indication of the given air-interface resource on which the base station is serving the WCD. The base station may then transmit the updated data packet for receipt by one or more gateways.
Abstract:
A method and corresponding system and apparatus to help manage UE context records. When a network controller detects that it is at or approaching a context record storage limit, such as might be imposed by license agreement for instance, the network controller offload one or more of its stored UE context records to another network controller to be stored temporarily by the other network controller until needed, even though the other network controller is not serving the UE(s) at issue.
Abstract:
A method and apparatus in which (i) a user equipment device registers with a first radio access network (RAN) that provides connectivity with a transport network, (ii) once registered with the first RAN, the device then registers via the first RAN and transport network with a call server, and (iii) in response to the device registering with the call server, but before the device then engages in a call served by the call server, the device registers via the first RAN with a second RAN. The method may thereby help to expedite later handover of a call served by the call server from being via the first RAN to being via the second RAN. Further, by the second RAN registration being conducted in response to registration of the device with the call server, the method may help to ensure usefulness of the registration of the device with the second RAN.
Abstract:
A method and apparatus for handing off packet-transmission between sectors of a wireless communication system is disclosed herein. During transmission of a packet from an access network to an access terminal, the access terminal determines that the packet should theoretically be transmitted to the access terminal in fewer timeslots in another sector than the number of allowed timeslots remaining for the packet transmission in a current sector. In response, the access terminal abandons packet transmission in the current sector and hands off to the other sector, in an effort to increase throughput and save air interface resources.
Abstract:
A method and apparatus in which (i) a user equipment device registers with a first radio access network (RAN) that provides connectivity with a transport network, (ii) once registered with the first RAN, the device then registers via the first RAN and transport network with a call server, and (iii) in response to the device registering with the call server, but before the device then engages in a call served by the call server, the device registers via the first RAN with a second RAN. The method may thereby help to expedite later handover of a call served by the call server from being via the first RAN to being via the second RAN. Further, by the second RAN registration being conducted in response to registration of the device with the call server, the method may help to ensure usefulness of the registration of the device with the second RAN.