Abstract:
The present invention is directed to novel non-invasive diagnostic took to dispose numerous disease states and/or conditions. The presets invention, represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these disease states. The novel imaging probe is capable of detecting infected cells, as well tissue. The methods described herein are able to diagnose, treat and/or monitor the therapy of numerous diseases and conditions including atherosclerosis, atherothrombosis, cerebral vascular disease, cerebral ischemia, cerebral infarct and meningitis as well as pneumonitis, pericarditis, multiple sclerosis, lupus erythematosus and pancreatitis, among others.
Abstract:
A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.
Abstract:
The present invention is directed to novel non-invasive diagnostic tools to diagnose numerous infectious disease states or conditions. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these disease states. The novel imaging probe is capable of detecting infected cells, as well tissue. This represents a quantum step forward in the diagnosis and staging of NHL using non-invasively molecular imaging techniques. This novel probe will also be useful to monitor patients response to therapeutic treatments and other interventions or therapies used in the treatment of these disease states or conditions. Compounds according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states. Pharmaceutical compositions are also described.
Abstract:
The present invention is directed to novel non-invasive diagnostic tools to image cancers, especially, leukemia and non-Hodgkin's lymphomas (NHL) with minimal toxicity in vivo. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these cancers. The novel imaging probe is capable of detecting precancerous cells, as well as their metastatic spread in tissues. This represents a quantum step forward in the diagnosis and staging of NHL using non-invasively molecular imaging techniques. This novel probe will also be useful to monitor patients response to chemotherapy treatments and other interventions or therapies used in the treatment of NHL. Compounds according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states.
Abstract:
In one embodiment, the invention provides a method of treating a subject suffering from chronic neuropathic pain and/or allodynia by administering a therapeutically-effective amount of at least one LFA1 antagonist to the subject. In a preferred embodiment, the invention provides a method of treating a subject suffering from chronic neuropathic pain and/or allodynia, the method comprising administering intrathecally to the subject a therapeutically-effective amount of microparticles comprising PLGA-encapsulated pDNA-IL-10, optionally in combination with a therapeutically-effective amount of intrathecally-administered CpG oligodeoxynucleotide (CpG ODN) and/or at least one LFA1 antagonist.
Abstract:
This disclosure provides radiolabeled compounds that bind to guanylyl cyclase C (GCC) and which can bind cancer cells that express GCC. Exemplary compounds comprise a chelating moiety capable of binding a radioactive atom, a peptide capable of binding GCC, and a linker moiety connecting the two. This disclosure also provides methods of detecting and treating cancer using the compounds described herein.
Abstract:
The present invention is directed to novel non-invasive diagnostic tools to image cancers, especially, leukemia and non-Hodgkin's lymphomas (NHL) with minimal toxicity in vivo. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these cancers. The novel imaging probe is capable of detecting precancerous cells, as well as their metastatic spread in tissues. This represents a quantum step forward in the diagnosis and staging of NHL using non-invasively molecular imaging techniques. This novel probe will also be useful to monitor patients response to chemotherapy treatments and other interventions or therapies used in the treatment of NHL. Compounds according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states.
Abstract:
A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.
Abstract:
The present invention is directed to novel non-invasive diagnostic tools to image cancers, especially, leukemia and non-Hodgkin's lymphomas (NHL) with minimal toxicity in vivo. The present invention represents a clear advance in the art which presently relies on tissue biopsy for diagnoses of these cancers. The novel imaging probe is capable of detecting precancerous cells, as well as their metastatic spread in tissues. This represents a quantum step forward in the diagnosis and staging of NHL using non-invasively molecular imaging techniques. This novel probe will also be useful to monitor patients response to chemotherapy treatments and other interventions or therapies used in the treatment of NHL. Compounds according to the present invention may be used as diagnostic tools for a number of conditions and diseases states as well as therapeutic agents for treating such conditions and disease states.
Abstract:
A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.