Abstract:
System for converting thermal energy into electrical energy (S1) intended to be arranged between a hot source (SC) and a cold source (SF), comprising means for converting thermal energy into mechanical energy (6) and a piezoelectric material, with the means for converting thermal energy into mechanical energy (6) comprising groups (G1, G2) of at least three bimetallic strips (9, 11, 13) linked mechanically together by their longitudinal ends and suspended above a substrate (12), each bimetallic strip (9, 11, 13) comprising two stable states wherein it has in each of the states a curvature, with two directly adjacent bimetallic strips (9, 11, 13) having for a given temperature opposite curvatures, with the switching from one stable state of the bimetallic strips (9, 11, 13) to the other causing the deformation of a piezoelectric material.
Abstract:
The invention concerns a measurement unit including: an electric ambient energy recovery generator; an element of capacitive storage of the electric energy generated by the generator; an electric battery; a first branch coupling an output node of the generator to a first electrode of the capacitive storage element; a second branch coupling a first terminal of the battery to the first electrode of the capacitive storage element; and an active circuit capable of transmitting a radio event indicator signal each time the voltage across the capacitive storage element exceeds a first threshold, wherein, in operation, the capacitive storage element simultaneously receives a first charge current originating from the generator via the first branch and a second charge current originating from the battery via the second branch.
Abstract:
An energy harvester including first and second sheets; and a plurality of walls, each wall being sandwiched between the first and second sheets and surrounding a cavity, wherein each cavity houses at least one curved plate adapted to change from a first shape to a second shape when its temperature reaches a first threshold and to return to the first shape when its temperature falls to a second threshold lower than said first threshold.
Abstract:
A method of forming at least one curved plate having first and second layers, the first layer being formed of a first material and the second layer being formed of a second material, the method including forming one or more blocks of a fusible material on a surface of a substrate; baking the one or more blocks to deform their shape; and depositing the first and second materials over the one or more deformed blocks to form the first and second layers.
Abstract:
System for converting thermal energy into electrical energy (S1) intended to be arranged between a hot source (SC) and a cold source (SF), comprising means for converting thermal energy into mechanical energy (6) and a piezoelectric material, with the means for converting thermal energy into mechanical energy (6) comprising groups (G1, G2) of at least three bimetallic strips (9, 11, 13) linked mechanically together by their longitudinal ends and suspended above a substrate (12), each bimetallic strip (9, 11, 13) comprising two stable states wherein it has in each of the states a curvature, with two directly adjacent bimetallic strips (9, 11, 13) having for a given temperature opposite curvatures, with the switching from one stable state of the bimetallic strips (9, 11, 13) to the other causing the deformation of a piezoelectric material.
Abstract:
A tunnel-effect power converter including first and second electrodes having opposite surfaces, wherein the first electrode includes protrusions extending towards the second electrode.
Abstract:
A device for converting thermal energy into electric energy intended to be used in combination with a hot source including: a capacitor of variable capacitance, including two electrodes separated by an electrically-insulating material, one of these electrodes being deformable and being associated with an element forming a bimetallic strip, said bimetallic strip including at least two layers of materials having different thermal expansion coefficients, said bimetallic strip being free to deform when it is submitted to the heat of said hot source; a second capacitor having a first electrode connected to a first electrode of said capacitor of variable capacitance; a harvesting circuit electrically connected between the second electrode of the capacitor of variable capacitance and the second electrode of the second capacitor, said harvesting circuit being capable of conducting the current flowing between said second electrodes.
Abstract:
A method for manufacturing a suspended membrane in a single-crystal semiconductor substrate, including the steps of: forming in the substrate an insulating ring delimiting an active area, removing material from the active area, successively forming in the active area a first and a second layers, the second layer being a single-crystal semiconductor layer, etching a portion of the internal periphery of said ring down to a depth greater than the thickness of the second layer, removing the first layer so that the second layer formed a suspended membrane anchored in the insulating ring.
Abstract:
A method for manufacturing a suspended membrane in a single-crystal semiconductor substrate, including the steps of: forming in the substrate an insulating ring delimiting an active area, removing material from the active area, successively forming in the active area a first and a second layers, the second layer being a single-crystal semiconductor layer, etching a portion of the internal periphery of said ring down to a depth greater than the thickness of the second layer, removing the first layer so that the second layer formed a suspended membrane anchored in the insulating ring.
Abstract:
A tunnel-effect power converter including first and second electrodes having opposite surfaces, wherein the first electrode includes protrusions extending towards the second electrode.