Abstract:
A thermo-electric generator includes a semiconductor membrane with a phononic structure containing at least one P-N junction. The membrane is suspended between a first support designed to be coupled to a cold thermal source and a second support designed to be coupled to a hot thermal source. The structure for suspending the membrane has an architecture allowing the heat flux to be redistributed within the plane of the membrane.
Abstract:
A system for converting thermal energy into electrical power includes a temperature-sensitive element held in a frame by its two ends between a heat source and a cold source producing a thermal gradient. A piezoelectric element is positioned between the frame and at least one end of the temperature-sensitive element. The temperature-sensitive element is configured to deform cyclically between two states under the action of the thermal gradient. With each cyclic deformation, a stress is applied to the piezoelectric element via the one end.
Abstract:
An integrated circuit die includes a substrate having a first layer of semiconductor material, a layer of dielectric material on the first layer of semiconductor material, and a second layer of semiconductor material on the layer of dielectric material. An extended channel region of a transistor is positioned in the second layer of semiconductor material, interacting with a top surface, side surfaces, and potentially portions of a bottom surface of the second layer of semiconductor material. A gate dielectric is positioned on a top surface and on the exposed side surface of the second layer of semiconductor material. A gate electrode is positioned on the top surface and the exposed side surface of the second layer of semiconductor material.
Abstract:
A method of manufacturing bistable strips having different curvatures, each strip including a plurality of portion of layers of materials, wherein at least one specific layer portion is deposited by a plasma spraying method in conditions different for each of the strips.
Abstract:
A device for converting thermal energy into electric energy intended to be used in combination with a hot source including: a capacitor of variable capacitance, including two electrodes separated by an electrically-insulating material, one of these electrodes being deformable and being associated with an element forming a bimetallic strip, said bimetallic strip including at least two layers of materials having different thermal expansion coefficients, said bimetallic strip being free to deform when it is submitted to the heat of said hot source; a second capacitor having a first electrode connected to a first electrode of said capacitor of variable capacitance; a harvesting circuit electrically connected between the second electrode of the capacitor of variable capacitance and the second electrode of the second capacitor, said harvesting circuit being capable of conducting the current flowing between said second electrodes.
Abstract:
A thermo-electric generator includes a semiconductor membrane with a phononic structure containing at least one P-N junction. The membrane is suspended between a first support designed to be coupled to a cold thermal source and a second support designed to be coupled to a hot thermal source. The structure for suspending the membrane has an architecture allowing the heat flux to be redistributed within the plane of the membrane.
Abstract:
System for converting thermal energy into electrical energy (S1) intended to be arranged between a hot source (SC) and a cold source (SF), comprising means for converting thermal energy into mechanical energy (6) and a piezoelectric material, with the means for converting thermal energy into mechanical energy (6) comprising groups (G1, G2) of at least three bimetallic strips (9, 11, 13) linked mechanically together by their longitudinal ends and suspended above a substrate (12), each bimetallic strip (9, 11, 13) comprising two stable states wherein it has in each of the states a curvature, with two directly adjacent bimetallic strips (9, 11, 13) having for a given temperature opposite curvatures, with the switching from one stable state of the bimetallic strips (9, 11, 13) to the other causing the deformation of a piezoelectric material.
Abstract:
A device for converting thermal power into electric power includes many conversion cells arranged inside and on top of a substrate. Each conversion cell includes a curved bimetal strip and first and second diodes coupled to the bimetal strip. The diodes are arranged in a semiconductor region of the substrate.
Abstract:
A detector of an event includes an electrical energy generator formed by a flexible piezoelectric element with a weight fastened to the flexible piezoelectric element that is biased with the weight in a position with the piezoelectric element flexed. In response to detection of the event, a trigger releases the weight so as to cause a vibration of the piezoelectric element. This vibration is converted by the flexible piezoelectric element into electrical energy. An electronic system is power by the electrical energy and is operable to generate an electrical signal indicative of the detected event.
Abstract:
An integrated circuit die includes a substrate having a first layer of semiconductor material, a layer of dielectric material on the first layer of semiconductor material, and a second layer of semiconductor material on the layer of dielectric material. An extended channel region of a transistor is positioned in the second layer of semiconductor material, interacting with a top surface, side surfaces, and potentially portions of a bottom surface of the second layer of semiconductor material. A gate dielectric is positioned on a top surface and on the exposed side surface of the second layer of semiconductor material. A gate electrode is positioned on the top surface and the exposed side surface of the second layer of semiconductor material.