Abstract:
For indicating on a data medium (9) a sector referenced by a binary word (16) formed of a number M of first bytes each comprising a number L of bits, the method includes steps of etching onto the data medium locally at this sector a succession of M second bytes each corresponding to a first byte, each second byte being equal to a vector of N components, each with a value of null1 or null1, such that Nnull2Lnull1 and such that the scalar product of said vector with any other vector to which another second byte is equal, is at most equal to null1. The data medium (9) is, for example, an optical disk.
Abstract:
During manufacturing of optical disks, mastering equipment inserts marks (nullhigh frequency wobble marksnull ornullHFWMsnull) into the wobble of the groove on optical disks to store data. The presence of a HFWM at a zero crossing of the wobble indicates an active bit and the absence of the HFWM indicates an inactive bit. The zero crossing is, for example, a negative zero crossing. A matched filter is used to detect the shape of the HFWMs. If a HFWM is detected during a wobble cycle, an active bit is saved in a register or a memory. If a HFWM is not detected during a wobble cycle, an inactive bit is saved in a register or a memory. The active and inactive bits may be coded bits that must be decoded to data bits. The data bits include information such as a synchronization mark, a sector identification data, and an error detection code.
Abstract:
A symbol length is evaluated on the basis of receiving a first-symbol length, and a phase error with respect to detection of a length of the first symbol before receiving a length of a second symbol following the first symbol. The process includes evaluating at least two random phase errors on the basis of the phase error received. A first random phase error is dependent on a deterministic phase error with respect to a first state corresponding to an absence of a corrected first-symbol length. A second random phase error is dependent on a deterministic phase error with respect to a second state corresponding to the corrected first-symbol length. The process includes retaining as an evaluated symbol length the first-symbol length received if the absolute value of the first random phase error reduces a condition of passing through the first state. The second step also retains as an evaluated symbol length the corrected first-symbol length if the absolute value of the second random phase error reduces the condition of passing through the second state.