Abstract:
The invention provides a protocol cycle during which a memory address and all the data bytes to be written are transmitted, and the writing process is carried out only once for all the transmitted data bytes, by writing a first byte in the memory sector corresponding to a first address generated by resetting to zero the 2 least significant bits of the transmitted address and all the other transmitted bytes in successive addresses. The method includes writing a certain number N of data bytes, in consecutive memory addresses in a memory array of a memory device, and includes unprotecting the memory sectors in which data are to be written, communicating the programming command to the memory device, communicating to the memory device the bits to be stored and specifying a relative memory address of a sector to write in, and writing the data bits in the memory.
Abstract:
The invention relates to an automatic decoding method for mapping and selecting a non-volatile memory device having a LPC serial communication interface in the available addressing area on motherboards. A logic structure is incorporated in the memory device, which allows a correct decoding to address the memory to the top of the addressable area or to the bottom of the same area, i.e., in both possible cases. This logic incorporates a non-volatile register whose information is stored in a Content Address Memory to enable the automatic mapping of the memory in the addressable memory area.
Abstract:
A nonvolatile memory device is operable in a serial mode and in a parallel mode. The architecture of the nonvolatile memory device is based upon the structure already present in a standard memory, but includes certain modifications. These modifications include the addition of a timing state machine for the various memory access phases (i.e., writing and reading data), and the addition of an internal bus and related logic circuits for disabling the internal address bus of the standard memory when the nonvolatile memory device operates in the serial mode.