Abstract:
A piezoelectric transducer for energy-harvesting systems includes a substrate, a piezoelectric cantilever element, a first magnetic element, and a second magnetic element, mobile with respect to the first magnetic element. The first magnetic element is coupled to the piezoelectric cantilever element. The first magnetic element and the second magnetic element are set in such a way that, in response to relative movements between the first magnetic element and the second magnetic element through an interval of relative positions, the first magnetic element and the second magnetic element approach one another without coming into direct contact, and the interaction between the first magnetic element and the second magnetic element determines application of a force pulse on the piezoelectric cantilever element.
Abstract:
An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
Abstract:
An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
Abstract:
A detection structure for a z-axis resonant accelerometer is provided with an inertial mass anchored to a substrate by means of elastic anchorage elements so as to be suspended above the substrate and perform an inertial movement of rotation about a first axis of rotation belonging to a plane of main extension of the inertial mass, in response to an external acceleration acting along a vertical axis transverse with respect to the plane; and a first resonator element and a second resonator element, which are mechanically coupled to the inertial mass by respective elastic supporting elements, which enable a movement of rotation about a second axis of rotation and a third axis of rotation, in a resonance condition. In particular, the second axis of rotation and the third axis of rotation are parallel to one another, and are moreover parallel to the first axis of rotation of the inertial mass.
Abstract:
A detection structure for a z-axis resonant accelerometer is provided with an inertial mass anchored to a substrate by means of elastic anchorage elements so as to be suspended above the substrate and perform an inertial movement of rotation about a first axis of rotation belonging to a plane of main extension of the inertial mass, in response to an external acceleration acting along a vertical axis transverse with respect to the plane; and a first resonator element and a second resonator element, which are mechanically coupled to the inertial mass by respective elastic supporting elements, which enable a movement of rotation about a second axis of rotation and a third axis of rotation, in a resonance condition. In particular, the second axis of rotation and the third axis of rotation are parallel to one another, and are moreover parallel to the first axis of rotation of the inertial mass.
Abstract:
A piezoelectric transducer for energy-harvesting systems includes a substrate, a piezoelectric cantilever element, a first magnetic element, and a second magnetic element, mobile with respect to the first magnetic element. The first magnetic element is coupled to the piezoelectric cantilever element. The first magnetic element and the second magnetic element are set in such a way that, in response to relative movements between the first magnetic element and the second magnetic element through an interval of relative positions, the first magnetic element and the second magnetic element approach one another without coming into direct contact, and the interaction between the first magnetic element and the second magnetic element determines application of a force pulse on the piezoelectric cantilever element.
Abstract:
An integrated detection structure has a first inertial mass and a second inertial mass, each of which is elastically anchored to a substrate and has a linear movement along a first horizontal axis, a first detection movement of rotation about a first axis of rotation parallel to a second horizontal axis and a second detection movement of translation along the second horizontal axis; driving electrodes cause linear movement of the inertial masses, in opposite directions of the first horizontal axis; a pair of flexural resonator elements and a pair of torsional resonator elements are elastically coupled to the inertial masses, the torsional resonator elements having a resonant movement of rotation about a second axis of rotation and a third axis of rotation, parallel to one another and to the first axis of rotation.
Abstract:
A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.