Abstract:
A method is provided for controlling a converter of the multiphase interleaving type. According to the method, there is detected when a change of the load applied to an output terminal of the converter occurs. All the phases of the converter are simultaneously turned off, and a driving interleaving phase shift is recovered so as to restart a normal operation of the converter. A controller for carrying out such a method is also provided.
Abstract:
A control unit for power supply circuits of points of load (POL) of an electronic system includes a means for autonomous customization by the customer-user of the original control program residing in the ROM of the device, as well as configuration of control parameters of the POL. Microprocessor architecture of the device includes a dedicated logic block and a rewritable non-volatile memory coupled to the data bus of the device or to an auxiliary bus thereof, thus providing a means for software extension of the power supply circuits. RAM is loaded at start-up with data of modified or added routines for implementing new commands and values of configuration and control data of the POL. The RAM may optionally be subjected to encryption/decryption for protection. During operation, program execution jumps from ROM address space to RAM address space and vice versa when certain values of a program counter are reached.
Abstract:
In a multi-phase power supply voltage regulator functioning at a nominal switching frequency, one or more phases are kept off for optimizing energy efficiency at relatively low load conditions. Reactivation of stand-by phases in response to a load increase transient is made more efficiently by exploiting information already present in the output voltage control loop. The technique comprises a) deriving from the control loop information on the equivalent nominal switching frequency given by the product of the nominal switching frequency by the number of active phases; b) updating at every beat of a clock signal the instantaneous value of the equivalent switching frequency; c) determining the band of equivalent switching frequency values to which the instantaneous value belongs; d) logically combining the equivalent switching frequency information with a determined band of output current level, for switching on one or more stand-by phases in response to a load increase transient.
Abstract:
A method is provided for controlling a converter of the multiphase interleaving type. According to the method, there is detected when a change of the load applied to an output terminal of the converter occurs. All the phases of the converter are simultaneously turned off, and a driving interleaving phase shift is recovered so as to restart a normal operation of the converter. A controller for carrying out such a method is also provided.
Abstract:
A converter includes first and second input terminals and first and second output terminals. The converter also includes an output capacitor coupled between the first output terminal and the second output terminal, and a magnetic component having two input terminals and three output terminals. A first output terminal of the magnetic component is coupled through a first electronic switch to the second output terminal of the converter, a second output terminal of the magnetic component is coupled to the first output terminal of the converter, and a third output terminal of the magnetic component is coupled through a second electronic switch to the second output terminal of the electronic converter. In addition, the converter includes a switching stage configured to transfer current pulses from the first input terminal and the second input terminal of the converter to the two input terminals of the magnetic component.
Abstract:
A method is provided for controlling a converter of the multiphase interleaving type. According to the method, there is detected when a change of the load applied to an output terminal of the converter occurs. All the phases of the converter are simultaneously turned off, and a driving interleaving phase shift is recovered so as to restart a normal operation of the converter. A controller for carrying out such a method is also provided.
Abstract:
A converter includes first and second input terminals and first and second output terminals. The converter also includes an output capacitor coupled between the first output terminal and the second output terminal, and a magnetic component having two input terminals and three output terminals. A first output terminal of the magnetic component is coupled through a first electronic switch to the second output terminal of the converter, a second output terminal of the magnetic component is coupled to the first output terminal of the converter, and a third output terminal of the magnetic component is coupled through a second electronic switch to the second output terminal of the electronic converter. In addition, the converter includes a switching stage configured to transfer current pulses from the first input terminal and the second input terminal of the converter to the two input terminals of the magnetic component.